@ STUDYDADDY

Get Homework Help
From Expert Tutor



https://studydaddy.com/?utm_source=pdf

This assignment builds on the last one where you developed a thread-based parallel merge-sort
from starter serial code. The following description is replicated from the previous assignment,
however, the problems after that are new.

You are provided with a program sort list openmp.c that sorts a list of integers in
ascending order using an iterative variant of the merge sort algorithm. A recursive approach to
merge sort consists of splitting the list into two sublists, sorting the two sublists recursively, and
then merging them. The merged list is constructed one element at a time by comparing pairs of
elements — one from each sublist — and placing the smaller of the two in the merged list. The
pointer that keeps track of the sublist elements to be compared advances to the next when its
element is placed in the merged list.

The merging process is inherently serial. To develop a parallel merge sort, it is worthwhile to
consider a bottom-up approach which results in an iterative algorithm. Starting from an unsorted
list, pairs of adjacent elements are “merged” into sorted sublists of size 2. This is followed by
merging adjacent lists into a larger list that is twice the size. The algorithm iterates through
k = log,(n) steps, or levels, where each level consists of merging adjacent sublists into a list twice
the size. The last level merges two halves of the original list into a fully sorted list, and is
equivalent to the first step in the recursive version described earlier.

To develop a parallel merge sort with p = 27 threads, we begin at level (k — q) of the iterative
algorithm described in the preceding paragraph. At this level, we have p sorted sublists, each
consisting of n/p elements (for simplicity assume both n and p are powers of 2). Let us denote the
sublist for thread i by L;. The remaining g steps of the algorithm result in merging pairs of sublists
for the last q levels as described in the iterative algorithm.

In order to employ all the threads in the merger process, thread i is given the responsibility of
determining the location of every element of its own sublist L; in the merged list, and placing it
directly in that location. For an element v, it is sufficient to figure out how many elements in the
paired list L;_, (or L;,,) are smaller than v, which can be determined by either a linear search or
binary search for v in of L;_;. Note that at higher levels where the sublists are larger than L;,
thread i remains responsible for n/p elements originally assigned to it; however, now it has to
consider larger sublists when computing the location of an element v. This is a bit involved but
should be evident when you examine the code provided to you. See figure at the end for
additional clarification.

While the code is serial, it is written in a way that identifies the work to be done by each thread,
which should allow straightforward parallelization using threads. The only difference from the
iterative algorithm is that sublists L; at level (k - q) are sorted by quick-sort instead of merge-sort.

To compile and execute the code, use the commands:
module load intel
ice =-gopenmp =-o sort_list openmp.exe sort_list openmp.c

./sort list openmp.exe <k> <g>



where <k> and <q> are integer arguments that specify the number of elements in the list n = 2¥,
and the number of threads p = 29. The output of a sample run is shown below.

./sort list openmp.exe 20 4

List 8ize = 1048576, Threads = 1l&, error = 0, time (sec) = 0.1414,
gsort time = 0.1260

Note that in its present form, the code is not multi-threaded. Thus Threads is merely reporting
the value 29 for the input q.

1. (70 points) Revise the code to implement parallel merge sort via OpenMTI". The code should
compile successfully and should report e rror=0 for the following instances:
.fsort_list openmp.exe 4 1
./sort_list openmp.exe 4 2
./sort list openmp.exe 4 3
./sort_list openmp.exe 20 4
/sort list openmp.exe 24 8



@ STUDYDADDY

Get Homework Help
From Expert Tutor



https://studydaddy.com/?utm_source=pdf

