

Get Homework Help From Expert Tutor

Get Help

- 1. For each of the statements below determine whether it is true or false, providing reasons for your answer.
 - (a) For the real line ℝ with the standard topology and its subset ℚ of all rational numbers we have Cl(ℚ) = ℝ. [2 marks]
 - (b) For the real line ℝ with the standard topology and its subset ℚ of all rational numbers we have ∂(ℚ) = ℝ. [2 marks]
 - (c) Singleton sets always closed in Hausdorff spaces. [2 marks]
- 2. Let

$$\mathcal{T} = \{(a, \infty) : a \in [-\infty, \infty]\}.$$

(Note: when $a = -\infty$ we have $(a, \infty) = \mathbb{R}$, while if $a = \infty$, then $(a, \infty) = \emptyset$.)

(a) Show that T is a topology on R.

[5 marks]

(b) Carefully explain whether T is Hausdorff or not.

[3 marks]

3. Let X be a topological space and let K_1, K_2, \ldots, K_m be compact subsets of X. Show that

$$K = K_1 \cup K_2 \cup \ldots \cup K_m$$

is compact, too. [5 marks]

4. Let X be a topological space. Prove that

$$\operatorname{Int}(A \cap B) = \operatorname{Int}(A) \cap \operatorname{Int}(B)$$

for all subsets A and B of X.

[8 marks]

5. Let (X, \mathcal{T}) and (Y, \mathcal{S}) be two topological spaces and $f, g: X \to Y$ be two continuous maps. Show that, if (Y, \mathcal{S}) is Hausdorff, the set

$$\Upsilon = \{ x \in X : f(x) \neq g(x) \}$$

is open. [5 marks]

6. Let (X, \mathcal{T}) be a Hausdorff topological space and let

$$K_1 \supseteq K_2 \supseteq \ldots \supseteq K_n \supseteq \ldots$$

be an infinite sequence of non-empty compact subsets of X. Show that

$$\bigcap_{n=1}^{\infty} K_n \neq \emptyset.$$

i.e. there exists a point $x \in X$ such that $x \in K_n$ for all $n \ge 1$.

[8 marks]

Get Homework Help From Expert Tutor

Get Help