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Abstract Experimental economics represents a strong growth industry. In the past

several decades the method has expanded beyond intellectual curiosity, now merit-

ing consideration alongside the other more traditional empirical approaches used in

economics. Accompanying this growth is an influx of new experimenters who are in

need of straightforward direction to make their designs more powerful. This study

provides several simple rules of thumb that researchers can apply to improve the effi-

ciency of their experimental designs. We buttress these points by including empirical

examples from the literature.

Keywords Experimental design
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1 Introduction

Ever since economists became engaged in the data business, they have grappled with

how to construct the proper counterfactual. The concept of identifying a treatment

effect is simple enough conceptually, but in practice a major problem is one of a

missing counterfactual—a person is not observed in more than one state simulta-

neously. Within economics, measurement approaches can be divided into two main
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categories: estimation of models that make use of naturally-occurring data and ap-

proaches wherein the analyst herself governs the data generation process. A handful

of popular empirical approaches are typically used when the analyst is dealing with

naturally-occurring data, but the literature is replete with criticisms of their identify-

ing assumptions, many times based on restrictiveness or implausibility (see Blundell

and Costa Dias 2002, for a useful review).

In those cases where the analyst generates her own data, such as within the area of

experimental economics, identification assumptions are much less severe. To obtain

the effect of treatment in the particular domain of study the only major assumption

necessary is appropriate randomization (with appropriate sample sizes). In this man-

ner, when running an experiment the analyst is using randomization as an instrumen-

tal variable (see List 2006). But with the chore of data generation comes other, less

discussed, obligations of the researcher. In this study, we consider one such feature

more carefully: the optimal number and arrangement of subjects into experimental

cells.

A casual perusal of the literature presents a striking consistency concerning sam-

ple sizes and their arrangement: most studies uniformly distribute at least 30 subjects

into each cell. This approach holds whether the analyst is making use of a purely

dichotomous treatment (i.e., pill or no pill) as well as when the analyst is explor-

ing levels of treatment (i.e., various dosage levels). Discussion of whether such a

sample arrangement is efficient is more mature in other literatures, but has not been

properly vetted in the experimental economics community. Our paper attempts to fill

this gap. In doing so, we do not claim originality in any of the derivations; rather,

this study should be viewed as a compilation of insights from other literatures that

might help experimenters in economics and related fields design more efficient ex-

periments.1

Our study begins with a discussion of popular randomization techniques. We dis-

cuss the virtues of complete randomization, block designs, and factorial designs.2

After these randomization preliminaries, we move to a discussion of the power of the

experimental design. We provide simple formulas with which to compute required

sample sizes under three major classes of assumptions: (1) a dichotomous treatment

with potentially heterogeneous treatment effects (for continuous and binomial out-

comes), (2) a dichotomous treatment in a cluster design, and (3) a continuous treat-

ment with homogeneous treatment effects. We elaborate on these simple formulas in

cases where the cost of sampling subjects differs across treatment and control and

where there is a fixed cost of sampling from a new cluster.

Several simple rules of thumb fall out of the discussion. The overarching idea

revolves around first implementing an experimental design that maximizes the vari-

ance of the treatment variable, and second adjusting the samples to account for vari-

ance heterogeneity, if necessary. In the case of a simple comparison between a single

treatment and a control group, one first insight is that with a continuous outcome

measure, under the null hypothesis of no treatment effect, one should only allocate

subjects equally across treatment and control if the sample variances of the outcome

1See Duflo et al. (2007) and Spybrook et al. (2009) for papers that cover similar ground.

2Fisher (1935) and Cochran and Cox (1950) provide seminal discussions of experimental design.
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means are expected to be equal in the treatment and control groups (i.e., in those

cases when there are homogeneous treatment effects). The optimal sample arrange-

ment becomes more lopsided as the sample variances of outcomes across treatment

and control become more disparate; or likewise, the treatment effect becomes more

heterogeneous. A simple rule of thumb to maximize power given a fixed experimen-

tal budget naturally follows: the ratio of the sample sizes is equal to the ratio of the

standard deviations of outcomes.

In cases when the outcome variable is dichotomous, under the null hypothesis of

no treatment effect (i.e., the means of the outcome variable are equal across treatment

and control), one should always allocate subjects equally across treatments. This fol-

lows from the close connection between mean and variance in the binomial outcome

case. Yet, if the null hypothesis postulates unequal means (and thus unequal vari-

ances across treatment and control), then the sample size arrangement is dictated in

the same manner as in the continuous case. If the cost of sampling subjects differs

across treatment and control groups, then the ratio of the sample sizes is inversely

proportional to the square root of the relative costs. Interestingly, differences in sam-

pling costs have exactly the same effect on relative sample sizes of treatment and

control groups as differences in variances.

In those instances where the unit of randomization is different from the unit of ob-

servation, special considerations must be paid to correlated outcomes. Specifically,

the optimal size of each cluster increases with the ratio of the within to between clus-

ter standard deviation, and decreases with the square root of the ratio of the cost of

sampling a subject to the fixed cost of sampling from a new cluster. Since the op-

timal sample size is independent of the available budget, the experimenter should

first determine how many subjects to sample in each cluster and then sample from

as many clusters as the budget permits (or until the optimal total sample size is

achieved).

A final class of results pertains to designs that include several levels of treatment,

or more generally when the treatment variable itself is continuous, but we assume

homogeneous treatment effects. The primary goal of the experimental design in this

case is to simply maximize the variance of the treatment variable. For example, if

the analyst is interested in estimating the effect of treatment and has strong priors

that the treatment has a linear effect, then the sample should be equally divided on

the endpoints of the feasible treatment range, with no intermediate points sampled.

Maximizing the variance of the treatment variable under an assumed quadratic, cu-

bic, quartic, etc., relationship produces unambiguous allocation rules as well: in the

quadratic case, for instance, the analyst should place half of the sample equally dis-

tributed on the endpoints and the other half on the midpoint. More generally, optimal

design requires that the number of treatment cells used should be equal to the highest

polynomial order plus one.

The remainder of our study proceeds as follows. Section 2 reviews several basic

randomization techniques. We summarize how to calculate optimal sample sizes in

Section 3. Section 4 elaborates on these considerations, and includes formulas for bi-

nomial outcomes and cluster designs. Section 5 discusses sample arrangement when

varying treatment levels are possible. Section 6 concludes.
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2 Randomization techniques

One key feature that differentiates empirical approaches within economics is how

they formulate the proper counterfactual, or estimate the treatment effect of interest.

To provide some formalization, we consider the outcome Yi of subject i under treat-

ment and control, T = 0 and T = 1, respectively. We assume that it can be modeled

as a function of observable variables Xi , an unobserved person-specific effect αi , an

average treatment effect τ̄ , a person-specific treatment effect τi , where E(τi) = 0,

and εi , which is assumed independent and identically distributed (i.i.d.)

YiT = αi + Xiβ + τ̄ T + τiT + εi (1)

The average treatment effect can then be defined as

τ̄ = E(Yi1 − Yi0) = E(Yi1) − E(Yi0)

The identification problem is that we can only observe E(Yi1 | T = 1) and E(Yi0 |

T = 0), where T = 1 or T = 0 for a given i. Because it is impossible to observe

unit i in both states (i.e., we cannot observe E(Yi1 | T = 0) and E(Yi0 | T = 1)), it is

necessary to construct a proper counterfactual. If the propensity to receive treatment

is correlated with any of the unobserved variables, then the estimate of the average

treatment effect is biased since

τ̂ = E(Yi1 | T = 1) − E(Yi0 | T = 0) �= E(Yi1) − E(Yi0) = τ̄

The approach used by experimentalists typically achieves identification via ran-

domization. The experimenter randomly assigns units to receive exposure or non-

exposure to treatment and then compares the outcomes of units that received treat-

ment to the outcomes of units that did not receive treatment. Randomization ensures

that the assignment to treatment is independent of other sources of variation, and

that any bias is balanced across treatment and control groups, thus ensuring that the

estimate of the average treatment effect is unbiased (for the subject pool).3

However, as Levitt and List (2009) discuss, one potential problem arising from

any randomization approach is “randomization bias,” a situation wherein the experi-

mental sample is not representative of the population of interest due to the random-

ization itself. This problem emanates from the field of clinical drug trials, where it

has been found that persuading patients to participate in randomized studies is much

harder than persuading them to participate in non-randomized studies (Kramer and

Shapiro 1984). In principle, randomization bias also might influence experiments in

economics. In particular, laboratory experiments as well as artefactual and framed

field experiments might suffer from randomization bias (see Harrison and List 2004).

The one study that we are aware of that explores this issue is the work of Harrison

et al. (2009). Using an artefactual field experiment to explore risk preferences, they

find that “randomization bias is not a major empirical problem for field experiments

3See Rubin (1978), Rosenbaum and Rubin (1983) and Holland (1986) for further discussion of the causal

model outlined here.
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of the kind we conducted. . .” (p. 1). Certainly more work is necessary, but our in-

tuition is that randomization bias will not present itself as a major impediment to

measurement in the same manner observed in clinical drug trials.

Below we discuss how, given that sample sizes in experiments are always of lim-

ited size, the experimenter should assign treatment. There is a large statistical litera-

ture on this issue, thus we aim to present a succinct overview of the main methods and

their advantages and disadvantages. It should be highlighted that our discussion will

continue to focus on measuring average treatment effects, which has consumed much

of the experimental literature. This is because it is in the spirit of classical experi-

mental design; yet we should note that this leaves important issues on the sidelines,

such as heterogeneity of treatment effects (see List 2006, for a general discussion,

and Loomes 2005 and Wilcox 2008 for studies that reveal the repercussions of this

choice in measuring expected utility violations). More broadly, we urge caveat lector

because in some cases the principles for choosing optimal designs might differ from

the principles considered here. Kanninen (2002) provides a beautiful illustration of

this fact when the goal is to measure the parameters of a binomial logit model.

2.1 Block and within subject designs

The simplest experimental design is a completely randomized design, where treat-

ments are probabilistically assigned to subjects independent of any of the subject’s

observed or unobserved characteristics. The advantage of this procedure is that it

minimizes the risk that treatment is correlated with individual characteristics. The

disadvantage is that the variance of outcomes is potentially very large and the sample

sizes of treatment and control groups are randomly generated. Both of these problems

reduce the experimenter’s ability to draw statistical inference from the experiment.

Instead, if the subject pool is heterogeneous in various dimensions the experi-

menter may want to reduce the variance of the unobserved component. This can be

done subsequent to the experiment by including observable variables Xi in a linear re-

gression and thus constructing an estimate of the average treatment effect with lower

variance in finite samples. Alternatively, the conditioning can be built into the design

of the experiment. The basic strategy used for incorporating subject heterogeneity

into the design of an experiment is to divide the experimental units into blocks. The

idea is to treat heterogeneous characteristics of subjects as further treatments. Ran-

domization is within, but not between blocks, thus ensuring that all treatment effects,

including the effect of subject characteristics, can be identified. Note that blocking,

or equivalently including observable variables in the subsequent regression, will typ-

ically decrease the variance of the estimate of the average treatment effect. Specifi-

cally, note that

var(τ̂ ) =
σ 2

N
=

var(ε)

N · var(T )
(2)

The variance of the estimate of the average treatment effect σ 2/N is increasing in

the variance of the unobserved component var(ε), and decreasing in the number of
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observations N and the variance of the treatment propensity var(T ).4 Blocking or

conditioning on X increases efficiency by reducing the variance of the unobserved

component. Another advantage is that blocking allows estimation of an average treat-

ment effect over subsamples of the subject pool. In this case, there is a distinct benefit

from blocking prior to the experiment since one can ensure that the standard error of

the estimate of the treatment effect for each subsample is as small as possible, as

discussed below.

A within subject experimental design, in which the same subject experiences more

than one experimental treatment, can be thought of as a special case of the block de-

sign where the experimenter blocks on a single subject. A main advantage of the

within subject design is that it may greatly reduce the variance of the unobserved

component, increasing the precision of the estimated average treatment effect. Specif-

ically, assuming that outcomes are generated by (1) then, conditional on X, the dif-

ference in the variance of the estimate of the treatment effect in a between subjects

and a within subject design is given by:

σ 2
BS − σ 2

WS =
2

N
var (αi)

where σ 2
BS and σ 2

WS are, respectively, the conditional between and within subject

variance.5 In addition, fewer subjects have to be recruited for a within subject design

and the degrees of freedom are larger. A disadvantage of the within subject design is

that treating a single subject multiple times may result in complicated interactions be-

tween treatments and thus yield a different parameter than is estimated in the between

experimental design. These context effects include history and learning effects, and

sensitization to perceived dependencies across trials (see Greenwald 1976). Some of

these more complicated effects can be controlled for using crossover designs, where

the order in which treatments are applied to a subject is randomized. For example, if

the outcome is determined by equation

Yit = Xitβ + τ̄ T + τiT + γ̄ T(t−1) + γiT(t−1) + εi

then applying treatment T and control C in the order T C and CT allows for identifi-

cation of τ̄ . More complicated interactions may be identified under a more elaborate

T CT and CT C crossover design to achieve identification. However, even the most

4More generally, var(τ̂ ) = var(ε)

N ·var(T )·(1−R2
XT

)
. But since treatment is assigned at random, X and T are

uncorrelated so that R2
XT

(the R-squared of a regression of T on X) is equal to zero.

5The within subject design, however, does not in general have to result in a lower variance of the estimate

of the treatment effect. If we allow for individual fixed effects and the treatment effects to be correlated:

YiT = αi + Xiβ + τ̄ T + τiT + ατijT + εi

then

σ 2
BS − σ 2

WS =
2

n

[

var(αi ) − var(ατij )
]

which is no longer unambiguously positive. See Keren (1993) for a derivation of these results and an

overview of factors that influence the choice in between or within subject design.
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ingenious within subject designs potentially suffer from the problem that treatments

may interact in unexpected ways. This issue in and of itself merits an entire study, but

we close the discussion urging scholars to take caution when interpreting treatment

effects measured using within subject designs.

2.2 Factorial designs

A completely random or random block design has the disadvantage that sample sizes

may vary considerably across blocks. In a factorial design the experimenter chooses

a pre-determined number of subjects to each combination of treatments, which can

greatly increase the efficiency of the design. Randomization in this case is over the

order in which treatments are assigned to experimental units. For example, subjects

should not be assigned to treatment and control groups in the order in which they

arrive at the laboratory, since early and late arrivals may differ systematically. Instead,

each subject should be assigned a random number, based upon which assignment to

treatment or control is carried out.

A basic factorial design has the same number of subjects assigned to each com-

bination of treatments. Further, it is likely to be expensive to run all possible com-

binations of treatments: with n treatments this would require 2n trials. However, in

the absence of interaction effects between treatments, only n + 1 trials are necessary

to identify all treatment effects. These n + 1 trials must be linearly independent to

guarantee that all treatment effects can be identified. The advantage of this fractional

factorial design approach is a reduced number of trials. A major disadvantage is that

in its simplest form such an approach renders it impossible to check for the existence

of interaction effects. Moreover, as we discuss below, the basic factorial design, with

equal sample sizes in each treatment cell, is likely to be inefficient.

3 Optimal sample arrangement: basics

Given a randomization scheme an important issue to consider is the optimal sample

size in each treatment cell. In calculating optimal sample sizes an experimenter must

consider three key elements: (1) the significance level, (2) the power of the subsequent

hypothesis test, and (3) the minimum detectable effect size. The significance level of

a hypothesis test is the probability of falsely rejecting the null hypothesis (also known

as the probability of a Type I error). The power of a statistical test is the probability

that it will correctly lead to the rejection of the null hypothesis (the probability of a

Type II error is 1-power, and is equal to the probability of falsely not rejecting the

null hypothesis).6 The effect size is the magnitude of the treatment effect that the

experimenter wants to detect.

6Discussions of power tend not to be intuitively appealing to economists. This is because our usual ap-

proach stems from the standard regression model: under a true null what is the probability of observing

the coefficient that we observed? Power calculations are altogether different, exploring the question of: if

the alternative hypothesis is true, then what is the probability that the estimated coefficient lies outside the

confidence interval defined under the null.
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In this section we derive an explicit formula for experiments that have a dichoto-

mous treatment, where the outcome is continuous and we assume that a t-test will

be used to determine differences in means between the treatment and control group.7

The formula illustrates the trade-offs inherent in the choices that experimenters face

and we make these more tangible by providing empirical examples. In subsequent

sections we consider further cases: binomial outcomes, cluster designs, and varying

treatment intensities. We also discuss cases where sampling costs for treatment and

control are unequal and where the cost of an additional subject in a new cluster is not

the same as that of a subject in a cluster that has already been sampled. In practice,

an experimenter can draw upon statistical software to help calculate sample sizes if

different hypothesis tests are to be used.8

3.1 Dichotomous treatment and continuous outcome

Using the empirical specification above, a single treatment T results in (condi-

tional) outcomes Yi0 if T = 0 where Yi0|Xi ∼ N(μ0, σ
2
0 ) and Yi1 if T = 1 where

Yi1|Xi ∼ N(μ1, σ
2
1 ). In the model given by (1) σ 2

1 −σ 2
0 = var(τ |X). Only if the vari-

ance of the individual specific treatment effects equals zero, i.e., the treatment effect

is homogeneous, will the variances across treatment and control groups be equal.

Since the experiment has not yet been conducted, the experimenter must form beliefs

about the variances of outcomes across the treatment and control groups, which may,

for example, come from theory, prior empirical evidence, or a pilot experiment. The

experimenter also has to make a decision about the minimum detectable difference

between mean control and treatment outcomes, μ1 − μ0 = δ, that the experiment is

meant to be able to detect. In essence, δ is the minimum average treatment effect,

τ̄ , that the experiment will be able to detect at a given significance level and power.

Finally, we assume that the significance of the treatment effect will be determined

using a t-test.

Calculating optimal sample sizes requires specifying a null hypothesis and a spe-

cific alternative hypothesis. Typically, the null hypothesis is that there is no treatment

effect, i.e., that the effect size is zero. The alternative hypothesis is that the effect size

takes on a specific value (the minimum detectable effect size). The idea behind the

choice of optimal sample sizes in this scenario is that the sample sizes have to be just

large enough so that the experimenter (1) does not falsely reject the null hypothesis

that the population treatment and control outcomes are equal, i.e., commit a Type I

error; and (2) does not falsely accept the null hypothesis when the actual difference is

equal to δ, i.e. commit a Type II error. More formally, if the observations for control

and treatment groups are independently drawn and H0 : μ0 = μ1 and H1 : μ0 �= μ1,

we need the difference in sample means Ȳ1 − Ȳ0 (which are of course not yet ob-

served) to satisfy the following conditions:

7The sample size calculations depend on the hypothesis test the experimenter will ex post employ to

analyse the data. For power calculations using non-parametric statistical tests see, for example, Rutström

and Wilcox (2009).

8Useful software and documentation includes Liu et al. (2009) and Spybrook et al. (2009), Lenth (2001,

2006–2009), StataCorp (2007). Note that optimal sample sizes calculated by various software may not

match precisely those that can be derived from the formulas in this paper.
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1. A probability α of committing a Type I error in a two-sided test, i.e., a significance

level of α. This is true if

Ȳ1 − Ȳ0
√

σ 2
0

n0
+

σ 2
1

n1

= tα/2 ⇒ Ȳ1 − Ȳ0 = tα/2

√

σ 2
0

n0
+

σ 2
1

n1
(3)

where σ 2
T and nT for T = {0,1} are the conditional variance of the outcome and

the sample size of the control and treatment groups.

2. A probability β of committing a Type II error, i.e. a power of 1−β , in a one-sided

test. This is true if

(Ȳ1 − Ȳ0) − δ
√

σ 2
0

n0
+

σ 2
1

n1

= −tβ ⇒ Ȳ1 − Ȳ0 = δ − tβ

√

σ 2
0

n0
+

σ 2
1

n1
(4)

Using (3) to eliminate Ȳ1 − Ȳ0 from (4) we obtain

δ = (tα/2 + tβ)

√

σ 2
0

n0
+

σ 2
1

n1
(5)

It can easily be shown that if σ 2
0 = σ 2

1 = σ 2, i.e. var(τ ) = 0, then the smallest sample

sizes that solve this equality satisfy n0 = n1 = n and then

n∗
0 = n∗

1 = n∗ = 2(tα/2 + tβ)2

(

σ

δ

)2

(6)

If the variance of the outcomes are not equal this becomes

N∗ =

(

tα/2 + tβ

δ

)2(σ 2
0

π∗
0

+
σ 2

1

π∗
1

)

π∗
0 =

σ0

σ0 + σ1
, π∗

1 =
σ1

σ0 + σ1
(7)

where N = n0 + n1, πo + π1 = 1, π0 = n0
no+n1

.

If sample sizes are large enough so that the normal distribution is a good approxi-

mation for the t-distribution, then the above equations are a closed form solution for

the optimal sample sizes. If sample sizes are small, then n must be solved by using

successive approximations. Optimal sample sizes increase proportionally with the

variance of outcomes, non-linearly with the significance level and the power, and de-

crease proportionally with the square of the minimum detectable effect. The relative

distribution of subjects across treatment and control is proportional to the standard

deviation of the respective outcomes. This suggests that if the variance of outcomes

under treatment and control are fairly similar there should not be a large loss in effi-

ciency from assigning equal sample sizes to each.
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Equation (6) makes it quite clear that any simple rule of thumb—such as place

30 subjects in each experimental treatment cell—has little basis in terms of power

unless the researcher believes that he wants to detect an approximately 0.70 standard

deviation change in the outcome variable. More generally, (6) can be used as a simple

heuristic to compute sample sizes necessary to detect various effects. For example,

following the standards in the literature and using a significance level of 0.05, and

setting power to 0.80, we have tα/2 = 1.96 and tβ = 0.84 from standard normal tables.

Thus, to detect a one (one-half) standard deviation change in the outcome variable one

would need n∗ = 16 (n∗ = 64) observations in each treatment cell.9

3.2 An empirical example

A quick perusal of experimental studies published in the social sciences, as well as

conducted in the business community, makes it clear that the status quo is to attempt

to include an equal number of subjects in every experimental cell. The summary

above provides a strong reason why we should be careful with this aspect of the de-

sign since we might fail to maximize power if we do not consider optimal sample

arrangements. Consider List (2001) as one illustrative example. List conducted a val-

uation field experiment at a sportscard show exploring how agents bid in Vickrey

second-price auctions for a baseball card. We focus here on the comparison of two

treatments among non-sportscard dealers: hypothetical versus actual bidding distribu-

tions. The underlying idea, therefore, is that in this case we might have heterogeneous

treatment effects in that agents respond differently to hypothetical auctions.

Indeed, previous work suggests that valuations in hypothetical settings have a

greater variance than valuations in tasks that are monetarily binding (see, e.g.,

Camerer and Hogarth 1999). Putting aside the issue of heterogeneous costs to obtain

sample points, the design fails to adequately adjust sample sizes for the greater ex-

pected variance in hypothetical bids. In the paper, the sample sizes for each group are

almost equivalent, while the standard deviation of bids in the hypothetical auction is

almost twice the standard deviation of bids in the actual auction.10 At a ratio of stan-

dard deviations of 2:1 the suboptimal design (with equal sample sizes in both groups)

requires an 11% larger total sample size than the optimal sample design (with the

ratio of sample sizes equal to the ratio of standard deviations) to achieve the same

power. Specifically, using (7), we calculate that given the total sample N = 175,

the optimal sample sizes for the hypothetical and actual auction are n1 = 111 and

n0 = 64, respectively. Using a uniform design instead of the optimal one decreases

the power of the experiment (at the observed effect size) from 69% to 66%. Had the

variances been even more different, the efficiency loss due to non-optimal sample

arrangements would have been much larger. All else equal, for a ratio of standard de-

viations of 3, 4, and 5 the required total sample size in the suboptimal (equal sample

size) design is 25%, 36%, and 44% larger than in the optimal design. Similarly, we

find that (using (5)) the minimum detectable effect size is 12%, 17%, and 20% higher

9For further discussion of standardized effect sizes see for example Cohen (1988).

10The mean bids (standard deviations) are $49.03 ($79.96) and $25.60 ($46.23) in the hypothetical and

actual auctions respectively. The book value of the baseball card was in the range of $200–$250.
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in the suboptimal design. However, with a level of power of 69%, the optimal design

is still underpowered relative to the conventional standard of 80%.

3.3 Treatments with unequal costs

Thus far we have implicitly assumed that sampling costs for treatment and control

groups are equal. Determining optimal sample sizes is somewhat more complicated

upon relaxation of this assumption. For example, in many cases treatment might be

more expensive to administer because it is costly to provide the good or service in

question. In this case, the key idea remains the same—we want to maximize the min-

imum detectable effect size, but now we must consider the cost of applying control

and treatment, c0 and c1, respectively By maximizing the minimum detectable ef-

fect, as given by (5), subject to the budget constraint c0n0 + c1n1 = M , where M is

the total budget available, we find that

n∗
1

n∗
0

=

√

c0

c1

σ1

σ0

As before, the optimal sample sizes are proportional to the standard deviations of

the respective outcomes and, in addition, they are inversely proportional to the square

root of the relative sampling cost. Hence, if sampling costs for the control group are

smaller than for the treatment group, as is frequently the case, then the control group

should be larger than the treatment group. Yet, as with unequal variances, since the

optimal sample sizes are proportional to the square root of the cost of sampling this

only becomes important when the difference in costs grows large.

3.4 Parameter uncertainty

In estimating optimal sample sizes an experimenter needs to decide on a significance

level, power and estimable effect size. The choice of significance level is given by

convention at 5%, but deciding on the relevant power is more difficult. Experimenters

typically want to reject the null hypothesis that the treatment effect is zero, where

the probability of such a rejection is given by the power. For example, running an

experiment with a power of 80% means that 20% of the time the experimenter will

ex ante not be able to reject the null hypothesis of a zero treatment effect despite there

being a significant effect in the population.

In cases where the experimenter is interested in the non-rejection of the null hy-

pothesis, equivalence testing is useful. Failure to reject a null hypothesis does not

provide unequivocal evidence that there is no treatment effect, since the failure to

reject may actually be the result of low statistical power. In equivalence testing, the

researcher decides on a value 
, where if the effect size is no larger than that value it

can be considered negligible. Thus, the null hypothesis becomes that a treatment has

a large effect, or H0 : |τ̄ | > 
, where τ̄ is the actual treatment effect. The alternative

hypothesis is H1 : |τ̄ | ≤ 
. The equivalence test entails two one-sided α level hypoth-

esis tests. Schuirmann (1987) shows that if a 1 − 2α confidence interval lies entirely

between −
 and 
, then we can reject the null hypothesis in favor of equivalence at

the α level.
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Traditionally, economists specify all aspects of an experiment’s design in advance

of actually beginning the experiment (or at least they claim to do so). However, the

major difficulty in obtaining reasonable estimates of optimal sample sizes is that in-

formation on the variance of outcomes may be poor. The use of historical data and

previous similar experiments are likely to be important sources of information. Fre-

quently, though, it is necessary to conduct a pilot experiment to obtain reasonable

estimates of the population parameters. This information is then used in deciding

how to design and apply treatments, as well as in deciding the number of subjects to

be sampled.

One issue with this approach is how to adapt the experimental design as new in-

formation is revealed. For example, as the experiment progresses the experimenter

may realize that initial estimates of the optimal sample size may have been too small

or too large. For a discussion of this issue in the clinical trial literature, including

adapting sample sizes and dosage levels during an ongoing clinical trial, see Berry

(2004). Bayesian approaches to this issue include Hahn et al. (2011), who develop

a “propensity score” method that uses estimates of heterogeneous treatment effects

from the first stage to set the conditional probability of treatment in the second stage,

following the optimal allocation of sample sizes under unequal variances. Further

examples in the economics literature include El-Gamal et al. (1993) and El-Gamal

and Palfrey (1996). These designs are more difficult to implement, but are especially

attractive if the cost of sampling is prohibitively high.

4 Optimal sample arrangement: further considerations

The formulas for the continuous case in a between subject design can be adapted for

other common experimental designs. Below we consider binary outcomes and cluster

designs.

4.1 Dichotomous treatment and binomial outcomes

To work out optimal sample sizes for binomial outcomes we assume that we can

use the normal approximation to the binomial distribution, and use (3) and (4) as in

the continuous case. However, in the cases of binary and count data the variance is

equal to p(1 − p) where p is the mean of the outcome variable. Thus, in (3), under

which the null hypothesis is true, the treatment and control groups will have equal

means and equal variances. In (4), under which the alternative hypothesis is true,

the treatment and control groups will have different means and therefore different

variances. Hence, the optimal sample sizes are

n∗
0 = n∗

1 = n∗ =
(

tα/2

√

2p̄(1 − p̄) + tβ
√

p0(1 − p0) + p1(1 − p1)
)2

δ−2 (8)

where p̄ = (p0 + p1)/2.

Since the variance p(1 − p) will be maximized for p = 0.5, optimal sample sizes

will increase as p̄ approaches 0.5 (i.e., sample sizes decrease in |p̄ − 0.5|). Similarly,

if the null hypothesis is of the form p1 = kp0, where k > 0, then the sample size

arrangement is dictated by k in the same manner as in the continuous case using (7).
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The closer p1 is to 0.5 relative to p0, the larger the proportion of the total sample size

that should be allocated to p1 (and vice versa).11

4.2 Cluster designs

Thus far we have assumed that the unobserved components are independently dis-

tributed among subjects. However, in particular with the recent growth in field exper-

iments, the possibility of correlation in the unobserved component among subjects

within a cluster needs to be considered. Field experiments commonly feature cluster

randomization, in which clusters of individuals rather than independent individuals

are randomly allocated to intervention groups. A key property of cluster randomiza-

tion trials is that the outcome of interest may occur at the individual level whereas the

randomization occurs at the cluster or group level. Thus, the unit of randomization is

different from the unit of statistical analysis. For example, an intervention aimed at

improving individual health might be randomly assigned to villages. In this case, the

lack of independence among individuals in the same village will affect both the opti-

mal sample sizes and the analysis of the experimental results. As we illustrate in the

example below, the adjustment to sample sizes due to clustering can be substantial.

Consider the case where each subject is also a member of a group j and outcomes

for T = {0,1} are given by

YijT = α + τ̄ T + νj + εij

with εij the individual specific i.i.d. error term and νj a group specific i.i.d. error term

(we ignore Xi , αi and τi for simplicity). Suppose that randomization is at the level

of the cluster, where each cluster is of size m for both treatment and control groups.

Under the assumption of equal variances across treatment and control groups (and

thus equal sample sizes), optimal sample sizes in cluster designs can be calculated

via the following equation:

n∗
0 = n∗

1 = n∗ = 2(tα/2 + tβ)2

(

σ

δ

)2
(

1 + (m − 1)ρ
)

(9)

with 2(k − 1) degrees of freedom (assuming no other covariates), where k = n
m

is the

number of clusters per treatment group, σ 2 = var(νj ) + var(εij ), is the variance of

the outcome for treatment and control groups, and ρ =
var(νj )

var((νj )+var(εij )
is the coeffi-

cient of intracluster correlation. This is simply our previous expression, as given by

(6), augmented by the “variance inflation factor”, 1 + (m − 1)ρ. Equation (9) shows

that the necessary total sample size in a cluster design increases (near) proportion-

ally with both the size of each cluster and the intracluster correlation. Also notice

that the degrees of freedom in a cluster design are far smaller, further increasing the

necessary sample size. Hence, in the presence of intracluster correlation, ρ �= 0, it is

important to randomize over many, small clusters so as to maximize the efficiency of

the experiment.

11For further discussion of binary data, see for example Fleiss et al. (2003).
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The decision on the optimal number of clusters k and number of subjects in each

cluster m in a cluster design will depend on the cost of sampling within a cluster

and the fixed cost of starting to sample from a new cluster. Denoting cm as the cost

of each subject and ck as a fixed cost per cluster, then the total cost of collecting

the data is 2 (cmm + ck) k = M , where M is the budget. Note that we are assuming

equal sampling costs for treatment and control groups. Maximizing the minimum de-

tectable effect size, found by rearranging (9), subject to this budget constraint yields

an expression for the optimal size of each cluster

m∗ =

√

(1 − ρ)

ρ

√

ck

cm

(10)

where (1−ρ)
ρ

=
var((εij )
var((νj )

. The optimal cluster size is proportional to the square root of

the ratio of the fixed cost per cluster and the cost per subject, and to the ratio of the

standard deviation of the within and between cluster variation. Perhaps surprisingly,

the optimal cluster size is independent of the total budget available for the experi-

ment. Thus on a limited budget the experimenter should first work out how many

subjects to sample from each cluster, and then sample as many cluster as is afford-

able. The optimal number of clusters k∗ is found by substituting the expression for

the optimal cluster size m∗ from (10) back into (9), recalling that n = mk.12 The

software available at Liu et al. (2009) and documented in Spybrook et al. (2009) is a

comprehensive tool for designing cluster level experiments.

5 Optimal sample arrangement: varying treatment levels

5.1 Varying treatment levels and continuous outcomes

This section explores optimal design when the treatment variable is permitted to

take on varying levels, under the assumption of homogeneous treatment effects. The

reader who is interested in cases of varying treatment levels and variance heterogene-

ity should see Kish (1965) and Wilcox (1996). To begin, let us return to the empirical

specification above, (1), but now consider the simpler case where τi = 0 for all i ;

thus treatment and control outcomes have the same variance. Now outcome Yi is a

function of observable variables Xi , a linear function of the treatment variable T and

εi , which is assumed i.i.d.

Yi = Xiβ + τ̄ T + εi

The goal in this case is to derive the most precise estimate of τ̄ by using exogenous

variation in T . To add further structure to the problem, we assume that the outcome

variable is measurable in continuous units (binary data outcomes do not change the

nature of the arguments) and the experimenter can set the treatment variable over the

range [0, Tmax].

12See, for example, Raudenbush (1997), Donner and Klar (2000), Bloom (2005), Raudenbush et al. (2007)

and Spybrook et al. (2009) for further discussion of optimal cluster design.
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Each time we present this type of exercise to our students, querying them about the

optimal sample arrangement, the modal response is one of uniformity: either “split

the sample into integers and equally distribute the sample,” or “split the sample into

equivalently sized cells” naturally become the crowd favorites. Before considering

the correct response, similar to the case with dichotomous treatment, it is useful to

reflect on the mechanics of the regression model in the relationship given above. To

maximize precision, one must first consider techniques to minimize the variance of

the estimated treatment effect. Recall that var(τ̂ ) = var((ε)
n·var(T )

. This simple relationship

provides three ways to increase precision: (1) decrease the variance of the unob-

served component var(ε), (2) increase the sample size n, or (3) increase the variance

of treatment var(T ). We are struck by the fact that in most literatures, including our

own, discussions surrounding changes in sample size, perhaps the costliest approach,

dominate the landscape when considering techniques to increase precision. Yet, there

is an exact trade-off inherent in experimental design that is clear from the regres-

sion model. For example, tripling the variation in treatment has an identical effect on

precision as tripling the sample size.

If the experimenter has strong priors that the effect of treatment is linear, then it is

straightforward to see that the variance of treatment is maximized by placing half of

the sample in treatment cell T = 0 and half of the sample in treatment cell T = Tmax.

Clearly, this maximizes the variance of treatment and hence minimizes the standard

error of the estimate of the treatment effect (for derivations of this and the following

results we direct the reader to Atkinson and Donev 1992, and Mead 1988). Hence, if

a linear treatment effect is to be identified, the optimal sample design is to place half

of the sample at each of the extremes of the range of potential treatment intensities.

The overall sample size can then be calculated using (6) where σ 2/n is given by (2).

If the analyst believes that the intensity of treatment has a non-linear effect on

the outcome variable, then clearly sampling from two values of T is inappropriate

since non-linear effects cannot be identified. In general, identification requires that

the number of treatment cells used should be equal to the highest polynomial or-

der plus one. For example, if a quadratic relationship is presumed, then three treat-

ment cells should be chosen in the feasible range. Further, in this case those treat-

ment cells selected should be at the extremes and at the midpoint of the range,

T = {0, Tmax/2, Tmax}, where the optimal proportions in each of these treatments

cells is { 1
4 , 1

2 , 1
4 }. As McClelland (1997) notes, intuitively the test for a quadratic ef-

fect compares the mean of the outcomes at the extremes to the mean of the outcome

at the midpoint; and as before, the variance is maximized when equal proportions

are allocated to calculating these two means. If both a linear and a quadratic effect

are included, then the problem becomes considerably more complicated, with the so-

lution being a weighted average of the linear and quadratic optimal allocations (see

Atkinson and Donev 1992).

A related problem is one where the treatment levels are ordinal (categorical)

rather than continuous. In this situation it is key to decide which contrasts are of

primary interest. For example, take a situation where there are three treatment scenar-

ios {A,B,C}. Imagine the researcher is primarily interested in comparing outcomes

under a baseline scenario A with outcomes under two alternative scenarios {B,C},

but the outcomes under scenarios B and C will not be compared with each other.
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In that case the optimal allocation weights more heavily toward A, { 1
2 , 1

4 , 1
4 }, since,

intuitively, scenario A is used in two contrasts. If instead the mean difference in out-

comes under B and C is of primary interest then the optimal allocation is {0, 1
2 , 1

2 }.

The interested reader should see McClelland (1997) for a more detailed discussion.

5.2 An empirical example

In this section we discuss an empirical example that illustrates our points. Our chosen

example is in the area of the economics of charity. Recently a set of lab and field

experiments have lent insights into the “demand side” of charitable fundraising. In

this spirit, Karlan and List (2007) designed a natural field experiment to measure key

parameters of the theory. In their study, they solicited contributions from more than

50,000 supporters of a liberal organization. They randomized households into several

different groups to explore whether upfront money used as matching funds promotes

giving. Among other things they tested whether larger match ratios induced more

giving. In particular, they use three treatment cells corresponding to match ratios of

3:1 (i.e., a $3 match for every $1 donated), 2:1 and 1:1.

Above we argued that if one were merely interested in estimating a linear price

effect over this range, and suppressed cost considerations, then the 1:1 and 3:1 cells

should have been the only ones sampled. Given a fixed number of subjects, we use

(5) to calculate that the minimum detectable effect of the two treatment cells design

(with an equal distribution of subjects across treatment cells) is about 22% higher

than that of the three treatment cell design.13 Alternatively, the three treatment cell

design requires 50% more observations than the two treatment cell design (for a given

power, significance level and minimum detectable effect). Suppose, instead of a linear

effect, the authors were interested in estimating a quadratic effect and had allocated

the sample accordingly (i.e., half the sample in the 2:1 cell and one-quarter of the

sample each in the 1:1 and 3:1 cells). If in fact the treatment effect turned out to be

linear rather than quadratic, this design would result in a minimum detectable effect

that is about 41% higher than that of the optimal two treatment cell design for linear

effects.

6 Concluding remarks

In experimental economics discussion of optimal sample arrangement is rare. In this

way, finding a study that makes use of the rules of thumb discussed herein is akin to

a ballroom dancer searching for a partner in a hip-hop dance club. Of course, there

are good reasons that we are hip-hoppers. First, the effect size and variance are both

unknown and difficult to guess without robust data, which could be costly to collect.

Second, the analyst might be involved in multiple hypothesis testing, and employing

a multiple treatment design makes it more likely that a statistically significant result

will emerge. Third, the status quo is powerful: one can readily guess the nature of the

13We use the estimated standard error of 0.049 from the empirical example, Karlan and List (2007), Ta-

ble 2A, Panel A, col (4). We assume a significance level of 5% and a power level of 80%.
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referee reports for a paper in which the author chooses to sample only the endpoints

of the feasible treatment region. Even in those cases where the referee agrees that

linearity is appropriate, we suspect that the referee will be more comfortable with

some mid-range sampling. We hope that this study begins to break that mold, and

induces experimenters to design more efficient experiments.

In this respect, under a certain set of assumptions, this study pinpoints several rules

of thumb that experimenters might find useful:

1. With a continuous outcome measure one should only allocate subjects equally

across treatment and control if the sample variances of the outcome means are

expected to be equal in the treatment and control groups, i.e. if the treatment effect

is homogeneous.

2. In those cases where the sample variances are not equal, the ratio of the sample

sizes should be set equal to the ratio of the standard deviations.

3. If the cost of sampling subjects varies across experimental cells, then the ratio of

the sample sizes is inversely proportional to the square root of the relative costs.

4. When the unit of randomization is different from the unit of analysis the opti-

mal size of each cluster increases with the ratio of the within to between cluster

standard deviation, and decreases with the square root of the ratio of the cost of

sampling a subject to the fixed cost of sampling from a new cluster.

5. When the treatment variable itself is continuous, the optimal design requires that

under the prior of a linear treatment effect the sample should be equally divided on

the endpoints of the feasible treatment range, with no intermediate points sampled.

Clearly, this study represents only the tip of the iceberg when it comes to dis-

cussing optimal experimental design. We hope that methodological discussion even-

tually sheds its perceived inferiority in experimental economics and begins to, at least,

ride shotgun in our drive to a deeper understanding of economic science. Several

prominent discussions remain to be heard: generalizability of results across domains

(but, see Levitt and List 2007, and subsequent studies), use of the strategy method,

one-shot versus repeated observations, elicitation of beliefs, within versus between

subject experimental designs, using experiments to estimate heterogeneous treatment

effects; and in the design area more specifically, optimal design using confidence

intervals, using multiple priors and Bayesian and frequentist sample size determina-

tion are but just a few areas not yet properly vetted in the experimental economics

community.
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