


PSU CS 161 - Introduction to Programming and Problem Solving (Winter 2013)

You are logged in as Nguyen Quan (Logout)

Home ▶ My courses ▶ CS161 ▶ 5 March - 11 March ▶ Homework 5: Payroll System

Homework 5: Payroll System

Due Wednesday, March 20 at 12:30AM(Tuesday Night)

You are going to program a very simple payroll system. You can use any example

code given during lectures (see the zip files for the lectures on Functions and

Files).

Input File

You will have a file called "payroll.txt" in the same directory as your program files.

The format of the payroll file is as follows:

<last name>,<first name>,<rate>,<hours>,<gross pay>

each employee is represented by a line with five fields separated by commas.

Here is an example file:

Nelson, Frank, 10.0, 20.0, 200.0

Harrison, Johanna, 15.5, 40.0, 620.0

Mannon, Ethyl, 25.5, 35.5, 905.25

WARNING: Do not write your program to only work with this file as our test script

will NOT be using the exact same values as above, just the same format. In fact,

it's guaranteed NOT to have 3 lines but it will be short (less than 200 lines). Your

program should be able to take ANY number of lines in the above format

(separated by commas) with any reasonable values (ie. the first two fields will be

string values and the last three fields will be floats).

NOTE: When debugging your program, I would suggest you create your own test

files (Don't upload these test files to Moodle; we only want your code files).

Menu Handling

After your program loads this file on start-up, then the following menu is displayed:

a - add a new employee

d - delete an employee

m - modify an employee

p - print all employees

You will then ask the user for a choice. You can use the skeletal program

'full_functions.py' from the Functions lecture (see Feb 19 for the zip file of code for

the functions lecture) but you will need to modify it to work with the homework (ie. it

shouldn't print anything about songs :-) ). Also, feel free to take out the code that

asks if the user wants to change their choice (it's more annoying than I thought).

Choice Descriptions

The choices do the following:

a - add an employee: Prompt the user for last name, first name, rate and hours.

Add employee to list of employees.

d - delete an employee: Prompt the user for an index into the list. Then delete

employee at this index.

m - modify an employee: Prompt the user for an index into the list and then

prompt for a field (“last name”, “first name”,”rate”, “hours”). Then prompt for a new

value. Replace the new value for the given field for the employee at the given

index.

p - print all employees: All employee information is printed to the screen in a nice

format (your choice of what is meant by 'nice'). Also include the index into the list

Navigation

Home

Site pages

My profile

My courses

CS161

Participants

General

8 January - 14

January

15 January - 21

January

22 January - 28

January

29 January - 4

February

5 February - 11

February

12 February - 18

February

19 February - 25

February

26 February - 4

March

5 March - 11 March

Settings

Course administration

My profile settings

My home

Lecture Notes:

Computing As A

Profession

Proficiency Demo

Schedule

Homework 5:

Payroll System

CS161: Assignment: Homework 5: Payroll System http://moodle.svcs.cs.pdx.edu/mod/assignment/view.php?id=390

1 of 2 3/7/13 6:29 PM



You are logged in as Nguyen Quan (Logout)

CS161

for debugging purposes (ie. so you can see whether the right employee info got

changed.)

The program should update the grossPay field whenever an employee's pay rate

and hours changes. This way when the print statement prints gross pay it will

always be the correct value (also, it will be correct when the program writes to

payroll.txt at the end).

Ending the Program

After the program is done with processing a choice, the user should be asked to

continue. If yes, then the program should re-display the menu. If no, the program

writes the payroll information back to "payroll.txt". This should be done by

re-opening the “payroll.txt” file with a “w” mode which erases whats in the file

already. The outputted format is the same as the inputted format so that when the

program is re-run, the new “payroll.txt” can be read and parsed correctly.

Requirements

First, your program needs to work correctly, In addition, to get full credit, your

program needs the following:

It needs to have one function called main() with no parameters. This

function is the starting point to run your program. The program should call

main() when run from shell. It should NOT call main if imported from another

file. (see full_functions.py for how to do this).

It needs to have at least 6 functions that you wrote (it will probably have

much more than that). Note that you will need to load and save the file plus

do four tasks so putting these into separate functions is a good idea.

No function body or any global code should be more than 15 lines long.

(NOT counting blank lines and comments). If the function starts getting

longer, break it into two or more functions.

Do NOT change global variables inside of functions (don't use the

global statement). Pass variables into functions as parameters.

The variable holding the employee information should NOT be global.

Create it by reading it in inside main (the reading part can be done from

another function and the list returned to main). Pass it to functions when it's

needed and write the results out to file in main (or, again, pass it into

another function as a parameter).

You should have two files: One file to hold your main function called

main.py. Another file to hold your functions and any global constants called

functions.py. Zip these two files into one file (for Mac users, use whatever

the equivalent of zip is) before uploading them to Moodle. You don't need to

add your own payroll.txt file as we will use our own version of payroll.txt.

You are free to use any combination of lists, dictionaries or classes to store the

employee information as long as everything works correctly. You don't need to

use classes for this assignment; you can do this assignment with a

combination with lists and dictionaries.

NOTE: If using classes, it is best to design one class to store ONE employee's info.

Then create a list of objects of this class. In other words, don't store the list of

employees inside the class itself.

Available from: Thursday, 7 March 2013, 06:00 PM

Due date: Wednesday, 20 March 2013, 12:30 AM

Upload a file

CS161: Assignment: Homework 5: Payroll System http://moodle.svcs.cs.pdx.edu/mod/assignment/view.php?id=390

2 of 2 3/7/13 6:29 PM




