

1

CHAPTER 24

Graphs and Applications

Objectives

 To model real-world problems using graphs and explain the Seven Bridges of Königsberg problem

(§24.1).

 To describe graph terminologies: vertices, edges, simple graphs, weighted/unweighted graphs, and

directed/undirected graphs (§24.2).

 To represent vertices and edges using lists, adjacent matrices, and adjacent lists (§24.3).

 To model graphs using the Graph class (§24.4).

 To represent the traversal of a graph using the Tree class (§24.5).

 To design and implement depth-first search (§24.6).

 To design and implement breadth-first search (§24.7).

 To solve the nine-tail problem using breadth-first search (§24.8).

2

24.1 Introduction

Key Point: Many real-world problems can be solved using graph algorithms.

Graphs play an important role in modeling real-world problems. For example, the problem to find a

shortest path between two cities can be modeled using a graph, where the vertices represent cities and the

edges represent the roads and distances between two adjacent cities, as shown in Figure 24.1. The problem

of finding a shortest path between two cities is reduced to finding a shortest path between two vertices in a

graph.

Seatt le (0)

San Francisco (1)

Los Angeles (2)

Denver (3)

Chicago (5)

Kansas City (4)

Houston (11)

Boston (6)

New York (7)

Atlanta (8)

Miami (9)

Dallas (10)

Figure 24.1

A graph can be used to model the distance between the cities.

The study of graph problems is known as graph theory. Graph theory was founded by Leonard Euler in

1736, when he introduced graph terminology to solve the famous Seven Bridges of Königsberg problem.

The city of Königsberg, Prussia, (now Kaliningrad, Russia) was divided by the Pregel River. There were

two islands on the river. The city and islands were connected by seven bridges, as shown in Figure 24.2a.

The question is, can one take a walk, cross each bridge exactly once, and return to the starting point? Euler

proved that it was not possible.

3

Island 1
Island 2

B

A

C
D

A

C

B

D

 (a) Seven bridges sketch (b) Graph model

Figure 24.2

Seven bridges connecting islands and land.

To establish a proof, Euler first abstracted the Königsberg city map into the sketch shown in Figure 24.2a,

by eliminating all streets. Second, he replaced each land mass with a dot, called a vertex or a node, and

each bridge with a line, called an edge, as shown in Figure 24.2b. This structure with vertices and edges is

called a graph.

Looking at the graph, we ask whether there is a path starting from any vertex, traversing all edges exactly

once, and returning to the starting vertex. Euler proved that for such path to exist, each vertex must have an

even number of edges. Therefore, the Seven Bridges of Königsberg problem has no solution.

Graph problems are often solved using algorithms. Graph algorithms have many applications in various

areas, such as in computer science, mathematics, biology, engineering, economics, genetics, and social

sciences. This chapter presents the algorithms for depth-first search and breadth-first search, and their

applications. The next chapter presents the algorithms for finding a minimum spanning tree and shortest

paths in weighted graphs, and their applications.

24.2 Basic Graph Terminologies

Key Point: A graph consists of vertices, and edges that connect the vertices.

This chapter does not assume that the reader has prior knowledge of graph theory or discrete mathematics.

We use plain and simple terms to define graphs.

4

What is a graph? A graph is a mathematical structure that represents relationships among entities in the

real world. For example, the graph is Figure 24.1 represents the roads and their distances among cities, and

the graph in Figure 24.2b represents the bridges among land masses.

A graph consists of a nonempty set of vertices, nodes, or points, and a set of edges that connect the

vertices. For convenience, we define a graph as G = (V, E), where V represents a set of vertices and E a set

of edges. For example, V and E for the graph in Figure 24.1 are as follows:

V = {"Seattle", "San Francisco", "Los Angeles",
 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 "Atlanta", "Miami", "Dallas", "Houston"};

E = {{"Seattle", "San Francisco"}, {"Seattle", "Chicago"},
 {"Seattle", "Denver"}, {"San Francisco", "Denver"},
 ...
 };

A graph may be directed or undirected. In a directed graph, each edge has a direction, which indicates that

you can move from one vertex to the other through the edge. You may model parent/child relationships

using a directed graph, where an edge from vertex A to B indicates that A is a parent of B.

Figure 24.3a shows a directed graph. In an undirected graph, you can move in both directions between

vertices. The graph in Figure 24.1 is undirected.

Peter (0)

Cindy (3)

Wendy (4)

Mark (2)

Jane (1)

A

B

C

E

D

A

B

C

E

D

 (a) A directed graph (b) A complete graph (c) A subgraph of the graph in (b)

Figure 24.3

Graphs may appear in many forms.

5

Edges may be weighted or unweighted. For example, each edge in the graph in Figure 24.1 has a weight

that represents the distance between two cities.

Two vertices in a graph are said to be adjacent if they are connected by the same edge. Similarly two edges

are said to be adjacent if they are connected to the same vertex. An edge in a graph that joins two vertices

is said to be incident to both vertices. The degree of a vertex is the number of edges incident to it.

Two vertices are called neighbors if they are adjacent. Similarly two edges are called neighbors if they are

incident.

A loop is an edge that links a vertex to itself. If two vertices are connected by two or more edges, these

edges are called parallel edges. A simple graph is one that has no loops and parallel edges. A complete

graph is one in which every two pairs of vertices are connected, as shown in Figure 24.3b.

A graph is connected if there exists a path between any two vertices in the graph. A subgraph of a graph

G is a graph whose vertex set is a subset of that of G and whose edge set is a subset of that of G. For

example, the graph in Figure 24.3c is a subgraph of the graph in Figure 24.3b.

Assume that the graph is connected and undirected. A spanning tree of a graph is a subgraph that is a tree

and connects all vertices in the graph.

PEDAGOGICAL NOTE

Before we introduce graph algorithms and applications, it is helpful to get acquainted with

graphs using the interactive tool at

www.cs.armstrong.edu/liang/animation/GraphLearningTool.html, as shown in Figure 24.4.

The tool allows you to add/remove/move vertices and draw edges using mouse gestures. You

can also find depth-first search (DFS) trees and breadth-first search (BFS) trees, and the

shortest path between two vertices.

6

Figure 24.4

You can use the tool to create a graph with mouse gestures and show DFS/BFS trees and shortest paths.

Check point

 24.1 What is the famous Seven Bridges of Königsberg problem?

 24.2 What is a graph? Explain the following terms: undirected graph, directed graph, weighted graph,

degree of a vertex, parallel edge, simple graph, complete graph, connected graph, cycle, subgraph,

tree, and spanning tree.

 24.3 How many edges are in a complete graph with 5 vertices? How many edges are in a tree of 5

vertices?

 24.4 How many edges are in a complete graph with n vertices? How many edges are in a tree of n

vertices?

24.3 Representing Graphs

Key Point: Representing a graph is to store its vertices and edges in a program. The data structure

for storing a graph is arrays or lists.

7

To write a program that processes and manipulates graphs, you have to store or represent graphs in the

computer.

24.3.1 Representing Vertices

The vertices can be stored in an array. For example, you can store all the city names in the graph in Figure

24.1 using the following array:

string vertices[] = {"Seattle", "San Francisco", "Los Angeles",
 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 "Atlanta", "Miami", "Dallas", "Houston"};

NOTE:

The vertices can be objects of any type. For example, you may consider cities as

objects that contain the information such as name, population, and mayor. So, you may

define vertices as follows:

City city0("Seattle", 563374, "Greg Nickels");
...
City city11("Houston", 1000203, "Bill White");
City vertices[] = {city0, city1, ..., city11};

class City
{
public:
 City(string& cityName, int population, string& mayor)
 {
 this->cityName = cityName;
 this->population = population;
 this->mayor = mayor;
 }

 string getCityName() const
 {
 return cityName;
 }

 int getPopulation() const
 {
 return population;
 }

 string getMayor() const
 {
 return mayor;
 }

 void setMayor(string& mayor)
 {
 this->mayor = mayor;
 }

8

 void setPopulation(int population)
 {
 this->population = population;
 }

private:
 string cityName;
 int population;
 string mayor;
};

The vertices can be conveniently labeled using natural numbers 0, 1, 2, ..., n - 1, for a graphs of n

vertices. So, vertices[0] represents "Seattle", vertices[1] represents "San Francisco",

and so on, as shown in Figure 24.4.

Seattle

San Francisco

Los Angeles

Denver

Kansas City

Chicago

Boston

New York

Atlanta

Miami

 Dallas

Houston

vertices[0]

vertices[1]

vertices[2]

vertices[3]

vertices[4]

vertices[5]

vertices[6]

vertices[7]

vertices[8]

vertices[9]

vertices[10]

vertices[11]

Figure 24.4

An array stores the vertex names.

NOTE:

You can reference a vertex by its name or its index, whichever is convenient.

Obviously, it is easy to access a vertex via its index in a program.

24.3.2 Representing Edges (for input): Edge Array

9

The edges can be represented using a two-dimensional array. For example, you can store all the edges in

the graph in Figure 24.1 using the following array:

int edges[][2] = {
 {0, 1}, {0, 3}, {0, 5},
 {1, 0}, {1, 2}, {1, 3},
 {2, 1}, {2, 3}, {2, 4}, {2, 10},
 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
 {6, 5}, {6, 7},
 {7, 4}, {7, 5}, {7, 6}, {7, 8},
 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
 {9, 8}, {9, 11},
 {10, 2}, {10, 4}, {10, 8}, {10, 11},
 {11, 8}, {11, 9}, {11, 10}
};

This is known as the edge representation using arrays.

24.3.3 Representing Edges (for input): Edge Objects

Another way to represent the edges is to define edges as objects and store them in a vector. The Edge class

is defined in Listing 24.1:

Listing 24.1 Edge.h

 1 #ifndef EDGE_H
 2 #define EDGE_H
 3
 4 class Edge
 5 {
 6 public:
 7 int u;
 8 int v;
 9
 10 Edge(int u, int v)
 11 {
 12 this->u = u;
 13 this->v = v;
 14 }
 15 };
 16 #endif

For example, you can store all the edges in the graph in Figure 24.1 using the following vector:

vector<Edge> edgeVector;
edgeVector.push_back(Edge(0, 1));
edgeVector.push_back(Edge(0, 3));
edgeVector.push_back(Edge(0, 5));

10

...

Storing Edge objects in a vector is useful if you don’t know the edges in advance.

Representing edges using edge array or Edge objects in §24.3.2 and §24.3.3 is intuitive for input, but not

efficient for internal processing. The next two sections introduce the representation of graphs using

adjacency matrices and adjacency lists. These two data structures are efficient for processing graphs.

24.3.4 Representing Edges: Adjacency Matrices

Assume that the graph has n vertices. You can use a two-dimensional n × n matrix, say

adjacencyMatrix, to represent edges. Each element in the array is 0 or 1.

adjacencyMatrix[i][j] is 1 if there is an edge from vertex i to vertex j; otherwise,

adjacencyMatrix[i][j] is 0. If the graph is undirected, the matrix is symmetric, because

adjacencyMatrix[i][j] is the same as adjacencyMatrix[j][i]. For example, the edges in

the graph in Figure 24.1 can be represented using an adjacency matrix as follows:

int adjacencyMatrix[12][12] = {
 {0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}, // Seattle
 {1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, // San Francisco
 {0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}, // Los Angeles
 {1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0}, // Denver
 {0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0}, // Kansas City
 {1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0}, // Chicago
 {0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0}, // Boston
 {0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0}, // New York
 {0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1}, // Atlanta
 {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1}, // Miami
 {0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1}, // Dallas
 {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0} // Houston
};

The adjacency matrix for the directed graph in Figure 24.3a can be represented as follows:

int a[5][5] = {{0, 0, 1, 0, 0}, // Peter
 {0, 0, 1, 0, 0}, // Jane
 {0, 0, 0, 0, 1}, // Mark
 {0, 0, 0, 0, 1}, // Cindy
 {0, 0, 0, 0, 0} // Wendy
 };

As discussed in §12.7, it is more flexible to represent arrays using vectors. When you pass an array to a

function, you also have to pass its size, but when you pass a vector to a function, you don’t have to pass its

11

size, because a vector object contains the size information. The preceding adjacency matrix can be

represented using a vector as follows:

vector<vector<int>> a(5);
a[0] = vector<int>(5); a[1] = vector<int>(5); a[2] = vector<int>(5);
a[3] = vector<int>(5); a[4] = vector<int>(5);

a[0][0] = 0; a[0][1] = 0; a[0][2] = 1; a[0][3] = 0; a[0][4] = 0;
a[1][0] = 0; a[1][1] = 0; a[1][2] = 1; a[1][3] = 0; a[1][4] = 0;
a[2][0] = 0; a[2][1] = 0; a[2][2] = 0; a[2][3] = 0; a[2][4] = 1;
a[3][0] = 0; a[3][1] = 0; a[3][2] = 0; a[3][3] = 0; a[3][4] = 1;
a[4][0] = 0; a[4][1] = 0; a[4][2] = 0; a[4][3] = 0; a[4][4] = 0;

24.3.5 Representing Edges: Adjacency Lists

You can represent edges using adjacency vertex lists or adjacency edge lists. An adjacency vertex list for a

vertex i contains the vertices that are adjacent to i and an adjacency edge list for a vertex i contains the

edges that are adjacent to i. You may define an array of lists. The array has n entries, and each entry is a

list. The adjacency vertex list for vertex i contains all the vertices j such that there is an edge from vertex i

to vertex j. For example, to represent the edges in the graph in Figure 24.1, you can create an array of lists

as follows:

 list<int> neighbors[12];

neighbors[0] contains all vertices adjacent to vertex 0 (i.e., Seattle), neighbors[1] contains all

vertices adjacent to vertex 1 (i.e., San Francisco), and so on, as shown in Figure 24.5.

 neighbors[0]

 neighbors[1]

 neighbors[2]

 neighbors[3]

 neighbors[4]

 neighbors[5]

 neighbors[6]

 neighbors[7]

 neighbors[8]

 neighbors[9]

neighbors[10]

neighbors[11]

Seattle

San Francisco

Los Angeles

Denver

Kansas City

Chicago

Boston

New York

Atlanta

Miami

Dallas

Houston

 1 2 3

 0 2 3

 1 3 4 10

 0 1 2 4 5

 2 3 5 7 8 10

 0 3 4 6 7

 5 7

 4 5 6 8

 4 7 9 10 11

 8 11

 2 4 8 11

 8 9 10

12

Figure 24.5

Edges in the graph in Figure 24.1 are represented using linked lists.

To represent the adjacency edge lists for the graph in Figure 24.1, you can create an array of lists as

follows:

list<Edge> neighbors[12];

neighbors[0] contains all edges adjacent to vertex 0 (i.e., Seattle), neighbors[1] contains all

edges adjacent to vertex 1 (i.e., San Francisco), and so on, as shown in Figure 24.6.

 neighbors[0]

 neighbors[1]

 neighbors[2]

 neighbors[3]

 neighbors[4]

 neighbors[5]

 neighbors[6]

 neighbors[7]

 neighbors[8]

 neighbors[9]

neighbors[10]

neighbors[11]

Seattle

San Francisco

Los Angeles

Denver

Kansas City

Chicago

Boston

New York

Atlanta

Miami

Dallas

Houston

Edge(0, 1) Edge(0, 2) Edge(0, 3)

Edge(1, 0) Edge(1, 2) Edge(1, 3)

Edge(2, 1) Edge(2, 3) Edge(2, 4) Edge(2, 10)

Edge(3, 0) Edge(3, 1) Edge(3, 2) Edge(3, 4) Edge(3, 5)

Edge(4, 2) Edge(4, 3) Edge(4, 5) Edge(4, 7) Edge(4, 8) Edge(4, 10)

Edge(5, 0) Edge(5, 3) Edge(5, 4) Edge(5, 6) Edge(5, 7)

Edge(6, 5) Edge(6, 7)

Edge(7, 4) Edge(7, 5) Edge(7, 6) Edge(7, 8)

Edge(8, 4) Edge(8, 7) Edge(8, 9) Edge(8, 10) Edge(8, 11)

Edge(9, 8) Edge(9, 11)

Edge(10, 2) Edge(10, 4) Edge(10, 8) Edge(10, 11)

Edge(11, 8) Edge(11, 9) Edge(11, 10)

Figure 24.6

Edges in the graph in Figure 24.1 are represented using adjacency edge lists.

NOTE

You can represent a graph using an adjacency matrix or adjacency lists. Which one is

better? If the graph is dense (i.e., there are a lot of edges), using an adjacency matrix is

preferred. If the graph is very sparse (i.e., very few edges), using adjacency lists is better,

because using an adjacency matrix would waste a lot of space.

Both adjacency matrices and adjacency lists may be used in a program to make

algorithms more efficient. For example, it takes O(1) constant time to check whether

13

two vertices are connected using an adjacency matrix and it takes linear time O(m) to

print all edges in a graph using adjacency lists, where m is the number of edges.

NOTE

Adjacency vertex is simpler for representing unweighted graphs. However, adjacency edge

lists are more flexible for a wide range of graph applications. It is easy to add additional

constraints on edges using adjacency edge lists. For this reason, this book will use adjacency

edge lists to represent graphs.

For flexibility and simplicity, we will use vectors to represent arrays. Also we will use vectors instead of

lists, because our algorithms only requires search for adjacent vertices in the list. Using vectors can

simplify coding. Using vectors, the adjacency list in Figure 24.5 can be built as follows:

vector<vector<Edge*>> neighbors(12);

neighbors[0].push_back(new Edge(0, 1));

neighbors[0].push_back(new Edge(0, 3));

neighbors[0].push_back(new Edge(0, 5));

neighbors[1].push_back(new Edge(1, 0));

neighbors[1].push_back(new Edge(1, 2));

neighbors[1].push_back(new Edge(1, 3));

...

...

Note that the pointers of Edge objects are stored in neighbors. This enables neighbors to store any

subtypes of Edge for using polymorphism. You will see its benefits in the next chapter when we add a

weighted edge to neighbors.

Check point

 24.5 How do you represent vertices in a graph? How do you represent edges using an edge array? How

do you represent an edge using an edge object? How do you represent edges using an adjacency

matrix? How do you represent edges using adjacency lists?

14

 24.6 Represent the following graph using an edge array, a list of edge objects, an adjacency matrix, an

adjacency vertex list, and an adjacency edge list, respectively.

24.4 The Graph Class

Key Point: The Graph class defines the common operations for a graph.

We now design a class to model graphs. What are the common operations for a graph? In general, you

need to get the number of vertices in a graph, get all vertices in a graph, get the vertex object with a

specified index, get the index of the vertex with a specified name, get the neighbors for a vertex, get the

adjacency matrix, get the degree for a vertex, perform a depth-first search, and perform a breadth-first

search. Depth-first search and breadth-first search will be introduced in the next section. Figure 24.7

illustrates these functions in the UML diagram.

15

 Graph<V>

#vertices: vector<V>

#neighbors: vector<vector<int>>

+Graph()

+Graph(vertices: vector<V>&, edges[][2]:
int, numberOfEdges: int)

+Graph(numberOfVertices: int , edges[][2]:
int, numberOfEdges: int)

+Graph(vertices: vector<V>&, edges:
vector<Edge>&)

+Graph(numberOfVertices: int , edges:
vector<Edge>&)

+getSize(): int const

+getDegree(v: int): int const

+getVertex(index: int): V const

+getIndex(v: V): in t const

+getVert ices(): vector<V> const

+getNeighbors(v: int): vector<int> const

+printEdges(): void const

+printAdjacencyMatrix(): void const

+clear(): void

+add Vertex(v: V): bool

+add Edge(u : int, v: int): bool

#createEdge(e: Edge*): bool
+dfs(v: int): Tree const

+bfs(v: int): Tree const

Vertices in the graph.

neighbors[i] stores all vertices adjacent to vertex with index
i.

Constructs an empty graph.

Constructs a graph with the specified vertices in a vector
and edges in a 2-D array.

Constructs a graph whose vert ices are 0, 1, …, n-1and edges
are specified in a 2-D array.

Constructs a graph with the vertices in a vector and edges in
a vector of Edge objects.

Constructs a graph whose vert ices are 0, 1, …, n–1 and
edges in a vector of Edge objects.

Returns the number of vertices in the graph.

Returns the degree for a specified vertex index.
Returns the vertex for the specified vertex index.

Returns the index for the specified vertex.

Returns the vertices in the graph in a vector.

Returns the neighb ors of vertex with index v.

Prin ts the edges of the graph to the console.

Prin ts the adjacency matrix of the graph to the console.

Clears the graph .

Returns true i f v is added to the graph. Returns false if v is
already in the graph.

Adds an edge from u to v to the graph throws
invalid_argument if u or v is invalid. Returns true if the
edge is added and false if (u, v) is already in the graph.

This protected function is called by add Edge.

Obtains a depth-firs t search tree.

Obtains a breadth-first search tree.

Figure 24.7

The Graph class defines the common operations for graphs.

vertices, a vector, is defined in the Graph class to represent vertices. The vertices may be of any type:

int, string, and so on. So, we use a generic type T to define it. neighbors, a vector of vectors, is

defined to represent edges. With these two data fields, it is sufficient to implement all the functions defined

in the Graph class.

A no-arg constructor is provided for convenience. With a no-arg constructor, it is easy to use the class as a

base class and as a data type for data fields in a class. You can create a Graph object using one of the four

other constructors, whichever is convenient. If you have an edge array, use the first two constructors in the

16

UML class diagram. If you have a vector of Edge objects, use the last two constructors in the UML class

diagram.

The generic type T indicates the type of vertices—integer, string, and so on. You can create a graph with

vertices of any type. If you create a graph without specifying the vertices, the vertices are integers 0, 1, ...,

n - 1, where n is the number of vertices. Each vertex is associated with an index, which is the same as

the index of the vertex in the array for vertices.

Assume the class is available in Graph.h. Listing 24.2 gives a test program that creates a graph for the one

in Figure 24.1 and another graph for the one in Figure 24.3a.

Listing 24.2 TestGraph.cpp

 1 #include <iostream>
 2 #include <string>
 3 #include <vector>
 4 #include "Graph.h" // Defined in Listing 24.2
 5 #include "Edge.h" // Defined in Listing 24.1
 6 using namespace std;
 7
 8 int main()
 9 {
 10 // Vertices for graph in Figure 24.1
 11 string vertices[] = {"Seattle", "San Francisco", "Los Angeles",
 12 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 13 "Atlanta", "Miami", "Dallas", "Houston"};
 14
 15 // Edge array for graph in Figure 24.1
 16 int edges[][2] = {
 17 {0, 1}, {0, 3}, {0, 5},
 18 {1, 0}, {1, 2}, {1, 3},
 19 {2, 1}, {2, 3}, {2, 4}, {2, 10},
 20 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
 21 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
 22 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
 23 {6, 5}, {6, 7},
 24 {7, 4}, {7, 5}, {7, 6}, {7, 8},
 25 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
 26 {9, 8}, {9, 11},
 27 {10, 2}, {10, 4}, {10, 8}, {10, 11},
 28 {11, 8}, {11, 9}, {11, 10}
 29 };
 30 const int NUMBER_OF_EDGES = 46; // 46 edges in Figure 24.1
 31
 32 // Create a vector for vertices

17

 33 vector<string> vectorOfVertices(12);
 34 copy(vertices, vertices + 12, vectorOfVertices.begin());
 35
 36 Graph<string> graph1(vectorOfVertices, edges, NUMBER_OF_EDGES);
 37 cout << "The number of vertices in graph1: " << graph1.getSize();
 38 cout << "\nThe vertex with index 1 is " << graph1.getVertex(1);
 39 cout << "\nThe index for Miami is " << graph1.getIndex("Miami");
 40
 41 cout << "\nedges for graph1: " << endl;
 42 graph1.printEdges();
 43
 44 cout << "\nAdjacency matrix for graph1: " << endl;
 45 graph1.printAdjacencyMatrix();
 46
 47 // vector of Edge objects for graph in Figure 24.3a
 48 vector<Edge> edgeVector;
 49 edgeVector.push_back(Edge(0, 2));
 50 edgeVector.push_back(Edge(1, 2));
 51 edgeVector.push_back(Edge(2, 4));
 52 edgeVector.push_back(Edge(3, 4));
 53 // Create a graph with 5 vertices
 54 Graph<int> graph2(5, edgeVector);
 55
 56 cout << "The number of vertices in graph2: " << graph2.getSize();
 57 cout << "\nedges for graph2: " << endl;
 58 graph2.printEdges();
 59
 60 cout << "\nAdjacency matrix for graph2: " << endl;
 61 graph2.printAdjacencyMatrix();
 62
 63 return 0;
 64 }

Sample output

The number of vertices in graph1: 12
The vertex with index 1 is San Francisco
The index for Miami is 9
edges for graph1:
Vertex Seattle(0): (Seattle, San Francisco)
 (Seattle, Denver) (Seattle, Chicago)
Vertex San Francisco(1): (San Francisco, Seattle)
 (San Francisco, Los Angeles) (San Francisco, Denver)
Vertex Los Angeles(2): (Los Angeles, San Francisco)
 (Los Angeles, Denver) (Los Angeles, Kansas City)
 (Los Angeles, Dallas)
Vertex Denver(3): (Denver, Seattle) (Denver, San Francisco)
 (Denver, Los Angeles) (Denver, Kansas City)
 (Denver, Chicago)
Vertex Kansas City(4): (Kansas City, Los Angeles)
 (Kansas City, Denver) (Kansas City, Chicago)
 (Kansas City, New York) (Kansas City, Atlanta)
 (Kansas City, Dallas)
Vertex Chicago(5): (Chicago, Seattle) (Chicago, Denver)
 (Chicago, Kansas City) (Chicago, Boston)
 (Chicago, New York)
Vertex Boston(6): (Boston, Chicago) (Boston, New York)
Vertex New York(7): (New York, Kansas City)
 (New York, Chicago) (New York, Boston) (New York, Atlanta)
Vertex Atlanta(8): (Atlanta, Kansas City)
 (Atlanta, New York) (Atlanta, Miami) (Atlanta, Dallas)

18

 (Atlanta, Houston)
Vertex Miami(9): (Miami, Atlanta) (Miami, Houston)
Vertex Dallas(10): (Dallas, Los Angeles)
 (Dallas, Kansas City) (Dallas, Atlanta)
 (Dallas, Houston)
Vertex Houston(11): (Houston, Atlanta) (Houston, Miami)
 (Houston, Dallas)

Adjacency matrix for graph1:
0 1 0 1 0 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 1 0
1 1 1 0 1 1 0 0 0 0 0 0
0 0 1 1 0 1 0 1 1 0 1 0
1 0 0 1 1 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 1 1 0 1 0 0 0
0 0 0 0 1 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0 1 0 0 1
0 0 1 0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 1 1 0
The number of vertices in graph2: 5
edges for graph2:
Vertex 0(0): (0, 2)
Vertex 1(1): (1, 2)
Vertex 2(2): (2, 4)
Vertex 3(3): (3, 4)
Vertex 4(4):

Adjacency matrix for graph2:
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

The program creates graph1 for the graph in Figure 24.1 in lines 11–36. The vertices for graph1 are

defined in lines 11–13. The edges for graph1 are defined in lines 16–29. The edges are represented using

a two-dimensional array. For each row i in the array, edges[i][0] and edges[i][1] indicate that

there is an edge from vertex edges[i][0] to vertex edges[i][1]. For example, the first row {0, 1}

represents the edge from vertex 0 (edges[0][0]) to vertex 1 (edges[0][1]). The row {0, 5}

represents the edge from vertex 0 (edges[2][0]) to vertex 5 (edges[2][1]). The graph is created in

line 36. Line 42 invokes the printEdges() function on graph1 to display all edges in graph1. Line

45 invokes the printAdjacencyMatrix() function on graph1 to display the adjacency matrix for

graph1.

19

The program creates graph2 for the graph in Figure 24.3a in lines 48–54. The edges for graph2 are

defined in lines 48–52. graph2 is created using a vector of Edge objects in line 54. Line 58 invokes the

printEdges() function on graph2 to display all edges in graph2. Line 61 invokes the

printAdjacencyMatrix() function on graph2 to display the adjacency matrix for graph1.

Note that graph1 contains the vertices of strings and graph2 contains the vertices with integers 0, 1, ...,

n-1, where n is the number of vertices. In graph1, the vertices are associated with indices 0, 1, ..., n-1.

The index is the location of the vertex in vertices. For example, the index of vertex Miami is 9.

Now we turn our attention to implementing the Graph class, as shown in Listing 24.3.

Listing 24.3 Graph.h

 1 #ifndef GRAPH_H
 2 #define GRAPH_H
 3
 4 #include "Edge.h" // Defined in Listing 24.1
 5 #include "Tree.h" // Defined in Listing 24.4
 6 #include <vector>
 7 #include <queue> // For implementing BFS
 8 #include <stdexcept>
 9 #include <sstream> // For converting a number to a string
 10
 11 using namespace std;
 12
 13 template<typename V>
 14 class Graph
 15 {
 16 public:
 17 // Construct an empty graph
 18 Graph();
 19
 20 // Construct a graph from vertices in a vector and
 21 // edges in 2-D array
 22 Graph(vector<V>& vertices, int edges[][2], int numberOfEdges);
 23
 24 // Construct a graph with vertices 0, 1, ..., n-1 and
 25 // edges in 2-D array
 26 Graph(int numberOfVertices, int edges[][2], int numberOfEdges);
 27
 28 // Construct a graph from vertices and edges objects
 29 Graph(vector<V>& vertices, vector<Edge>& edges);
 30
 31 // Construct a graph with vertices 0, 1, ..., n-1 and
 32 // edges in a vector
 33 Graph(int numberOfVertices, vector<Edge>& edges);

20

 34
 35 // Return the number of vertices in the graph
 36 int getSize() const;
 37
 38 // Return the degree for a specified vertex
 39 int getDegree(int v) const;
 40
 41 // Return the vertex for the specified index
 42 V getVertex(int index) const;
 43
 44 // Return the index for the specified vertex
 45 int getIndex(V v) const;
 46
 47 // Return the vertices in the graph
 48 vector<V> getVertices() const;
 49
 50 // Return the neighbors of vertex v
 51 vector<int> getNeighbors(int v) const;
 52
 53 // Print the edges
 54 void printEdges() const;
 55
 56 // Print the adjacency matrix
 57 void printAdjacencyMatrix() const;
 58
 59 // Clear the graph
 60 void clear();
 61
 62 // Adds a vertex to the graph
 63 virtual bool addVertex(V v);
 64
 65 // Adds an edge from u to v to the graph
 66 bool addEdge(int u, int v);
 67
 68 // Obtain a depth-first search tree
 69 // To be discussed in Section 24.6
 70 Tree dfs(int v) const;
 71
 72 // Starting bfs search from vertex v
 73 // To be discussed in Section 24.7
 74 Tree bfs(int v) const;
 75
 76 protected:
 77 vector<V> vertices; // Store vertices
 78 vector<vector<Edge*>> neighbors; // Adjacency edge lists
 79 bool createEdge(Edge* e); // Add an edge
 80
 81 private:
 82 // Create adjacency lists for each vertex from an edge array
 83 void createAdjacencyLists(int numberOfVertices, int edges[][2],
 84 int numberOfEdges);
 85
 86 // Create adjacency lists for each vertex from an Edge vector
 87 void createAdjacencyLists(int numberOfVertices,
 88 vector<Edge>& edges);
 89
 90 // Recursive function for DFS search
 91 void dfs(int v, vector<int>& parent,
 92 vector<int>& searchOrders, vector<bool>& isVisited) const;
 93 };

21

 94
 95 template<typename V>
 96 Graph<V>::Graph()
 97 {
 98 }
 99
100 template<typename V>
101 Graph<V>::Graph(vector<V>& vertices, int edges[][2],
102 int numberOfEdges)
103 {
104 for (unsigned i = 0; i < vertices.size(); i++)
105 addVertex(vertices[i]);
106
107 createAdjacencyLists(vertices.size(), edges, numberOfEdges);
108 }
109
110 template<typename V>
111 Graph<V>::Graph(int numberOfVertices, int edges[][2],
112 int numberOfEdges)
113 {
114 for (int i = 0; i < numberOfVertices; i++)
115 addVertex(i); // vertices is {0, 1, 2, ..., n-1}
116
117 createAdjacencyLists(numberOfVertices, edges, numberOfEdges);
118 }
119
120 template<typename V>
121 Graph<V>::Graph(vector<V>& vertices, vector<Edge>& edges)
122 {
123 for (unsigned i = 0; i < vertices.size(); i++)
124 addVertex(vertices[i]);
125
126 createAdjacencyLists(vertices.size(), edges);
127 }
128
129 template<typename V>
130 Graph<V>::Graph(int numberOfVertices, vector<Edge>& edges)
131 {
132 for (int i = 0; i < numberOfVertices; i++)
133 addVertex(i); // vertices is {0, 1, 2, ..., n-1}
134
135 createAdjacencyLists(numberOfVertices, edges);
136 }
137
138 template<typename V>
139 void Graph<V>::createAdjacencyLists(int numberOfVertices,
140 int edges[][2], int numberOfEdges)
141 {
142 for (int i = 0; i < numberOfEdges; i++)
143 {
144 int u = edges[i][0];
145 int v = edges[i][1];
146 addEdge(u, v);
147 }
148 }
149
150 template<typename V>
151 void Graph<V>::createAdjacencyLists(int numberOfVertices,
152 vector<Edge>& edges)
153 {

22

154 for (unsigned i = 0; i < edges.size(); i++)
155 {
156 int u = edges[i].u;
157 int v = edges[i].v;
158 addEdge(u, v);
159 }
160 }
161
162 template<typename V>
163 int Graph<V>::getSize() const
164 {
165 return vertices.size();
166 }
167
168 template<typename V>
169 int Graph<V>::getDegree(int v) const
170 {
171 return neighbors[v].size();
172 }
173
174 template<typename V>
175 V Graph<V>::getVertex(int index) const
176 {
177 return vertices[index];
178 }
179
180 template<typename V>
181 int Graph<V>::getIndex(V v) const
182 {
183 for (unsigned i = 0; i < vertices.size(); i++)
184 {
185 if (vertices[i] == v)
186 return i;
187 }
188
189 return -1; // If vertex is not in the graph
190 }
191
192 template<typename V>
193 vector<V> Graph<V>::getVertices() const
194 {
195 return vertices;
196 }
197
198 template<typename V>
199 vector<int> Graph<V>::getNeighbors(int u) const
200 {
201 vector<int> result;
202 for (Edge* e: neighbors[u])
203 result.push_back(e->v);
204 return result;
205 }
206
207 template<typename V>
208 void Graph<V>::printEdges() const
209 {
210 for (unsigned u = 0; u < neighbors.size(); u++)
211 {
212 cout << "Vertex " << getVertex(u) << "(" << u << "): ";

23

213 for (Edge* e: neighbors[u])
214 {
215 cout << "(" << getVertex(e->u) << ", " << getVertex(e->v) <<
") ";
216 }
217 cout << endl;
218 }
219 }
220
221 template<typename V>
222 void Graph<V>::printAdjacencyMatrix() const
223 {
224 // Use vector for 2-D array
225 vector<vector<int>> adjacencyMatrix(getSize());
226
227 // Initialize 2-D array for adjacency matrix
228 for (int i = 0; i < getSize(); i++)
229 {
230 adjacencyMatrix[i] = vector<int>(getSize());
231 }
232
233 for (unsigned i = 0; i < neighbors.size(); i++)
234 {
235 for (Edge* e: neighbors[i])
236 {
237 adjacencyMatrix[i][e->v] = 1;
238 }
239 }
240
241 for (unsigned i = 0; i < adjacencyMatrix.size(); i++)
242 {
243 for (unsigned j = 0; j < adjacencyMatrix[i].size(); j++)
244 {
245 cout << adjacencyMatrix[i][j] << " ";
246 }
247
248 cout << endl;
249 }
250 }
251
252 template<typename V>
253 void Graph<V>::clear()
254 {
255 vertices.clear();
256 for (int i = 0; i < getSize(); i++)
257 for (Edge* e: neighbors[i])
258 delete e;
259 neighbors.clear();
260 }
261
262 template<typename V>
263 bool Graph<V>::addVertex(V v)
264 {
265 if (find(vertices.begin(), vertices.end(), v) == vertices.end())
266 {
267 vertices.push_back(v);
268 neighbors.push_back(vector<Edge*>(0));
269 return true;
270 }
271 else

24

272 {
273 return false;
274 }
275 }
276
277 template<typename V>
278 bool Graph<V>::createEdge(Edge* e)
279 {
280 if (e->u < 0 || e->u > getSize() - 1)
281 {
282 stringstream ss;
283 ss << e->u;
284 throw invalid_argument("No such edge: " + ss.str());
285 }
286
287 if (e->v < 0 || e->v > getSize() - 1)
288 {
289 stringstream ss;
290 ss << e->v;
291 throw invalid_argument("No such edge: " + ss.str());
292 }
293
294 vector<int> listOfNeighbors = getNeighbors(e->u);
295 if (find(listOfNeighbors.begin(), listOfNeighbors.end(), e->v)
296 == listOfNeighbors.end())
297 {
298 neighbors[e->u].push_back(e);
299 return true;
300 }
301 else
302 {
303 return false;
304 }
305 }
306
307 template<typename V>
308 bool Graph<V>::addEdge(int u, int v)
309 {
310 return createEdge(new Edge(u, v));
311 }
312
313 template<typename V>
314 Tree Graph<V>::dfs(int u) const
315 {
316 vector<int> searchOrders;
317 vector<int> parent(vertices.size());
318 for (unsigned i = 0; i < vertices.size(); i++)
319 parent[i] = -1; // Initialize parent[i] to -1
320
321 // Mark visited vertices
322 vector<bool> isVisited(vertices.size());
323 for (unsigned i = 0; i < vertices.size(); i++)
324 {
325 isVisited[i] = false;
326 }
327
328 // Recursively search
329 dfs(u, parent, searchOrders, isVisited);
330
331 // Return a search tree

25

332 return Tree(u, parent, searchOrders);
333 }
334
335 template<typename V>
336 void Graph<V>::dfs(int u, vector<int>& parent,
337 vector<int>& searchOrders, vector<bool>& isVisited) const
338 {
339 // Store the visited vertex
340 searchOrders.push_back(u);
341 isVisited[u] = true; // Vertex v visited
342
343 for (Edge* e: neighbors[u])
344 {
345 if (!isVisited[e->v])
346 {
347 parent[e->v] = u; // The parent of vertex i is v
348 dfs(e->v, parent, searchOrders, isVisited); // Recursive
search
349 }
350 }
351 }
352
353 template<typename V>
354 Tree Graph<V>::bfs(int v) const
355 {
356 vector<int> searchOrders;
357 vector<int> parent(vertices.size());
358 for (int i = 0; i < getSize(); i++)
359 parent[i] = -1; // Initialize parent[i] to -1
360
361 queue<int> queue; // Stores vertices to be visited
362 vector<bool> isVisited(getSize());
363 queue.push(v); // Enqueue v
364 isVisited[v] = true; // Mark it visited
365
366 while (!queue.empty())
367 {
368 int u = queue.front(); // Get from the front of the queue
369 queue.pop(); // remove the front element
370 searchOrders.push_back(u); // u searched
371 for (Edge* e: neighbors[u])
372 {
373 int w = e->v;
374 if (!isVisited[w])
375 {
376 queue.push(w); // Enqueue w
377 parent[w] = u; // The parent of w is u
378 isVisited[w] = true; // Mark it visited
379 }
380 }
381 }
382
383 return Tree(v, parent, searchOrders);
384 }
385
386 #endif

To construct a graph, you need to create vertices and edges. The vertices are stored in a vector<T> and

the edges in a vector<vector<Edge>> (line 78), which is the adjacency edge list described in

26

§24.3.4. The constructors (lines 95–136) create vertices and edges. The edges may be created from an edge

array (discussed in §24.3.2) or a vector of Edge objects (discussed in §24.3.3). The private function

createAdjacencyList (lines 138–148) is used to create the adjacency list from an edge array and the

overloaded createAdjacencyList function (lines 150–160) is used to create the adjacency list from

a vector of Edge objects. The Edge class is defined in Listing 24.1, which simply defines two vertices

having an edge.

vertices and neighbors are declared protected so that they can be accessed from derived classes of

Graph for future extension.

The function getSize returns the number of the vertices in the graph (lines 162–166). The function

getDegree(int v) returns the degree of a vertex with index v (lines 168–172). The function

getVertex(int index) returns the vertex with the specified index (lines 174–178). The function

getIndex(T v) returns the index of the specified vertex (lines 180–190). The function

getVertices() returns the vector for the vertex (lines 192–196). The function getNeighbors(u)

returns a list of vertices adjacent to u (lines 198–205). The function printEdges() (lines 207–219)

displays all vertices and edges adjacent to each vertex. The function printAdjacencyMatrix()

(lines 221–250) displays the adjacency matrix.

The function clear removes all edges and vertices from the graph (lines 252-260). The function

addVertex(v) adds a new vertex to the graph and returns true if the vertex is not in the graph (lines

262-275). If the vertex is already in the graph, the function returns false (line 273).

The function createEdge adds a new edge to the graph (lines 277-305). It throws an

invalid_argument exception if the edges are invalid (lines 280-292). It returns false if the edge is

already in the graph (line 303). Note that this function is a protected function and may be used by a derived

class to add a different type of edge to the graph. In this class, it is called by the addEdge(u, v)

function to add an unweighted edge to the graph (line 310).

27

The code in lines 313–384 gives the functions for finding a depth-first search tree and a breadth-first

search tree, which will be introduced in subsequent sections.

Check point

 24.7 Describe the relationships among Graph, Edge, and Tree.

 24.8 For the code in Listing 24.1, TestGraph.cpp, what is graph1.getIndex("Seattle")? What is

graph1.getDegree(5)? What is graph1.getVertex(4)?

24.5 Graph Traversals

Key Point: Depth-first and breadth-first are two common ways to traverse a graph.

Graph traversal is the process of visiting each vertex in the graph exactly once. There are two popular ways

to traverse a graph: depth-first traversal (or depth-first search) and breadth-first traversal (or breadth-first

search). Both traversals result in a spanning tree, which can be modeled using a class, as shown in Figure

24.8. The Tree class describes the parent-child relationship of the nodes in the tree, as shown in Listing

24.4.

 Tree

-root: int

-parent: vector<int>

-searchOrders: vector<int>

+Tree()

+Tree(root: in t, parent: vector<in t>&,
searchOrders: vector<int>&)

+Tree(root: in t, parent: vector<in t>&)

+getRoot(): int const

+getSearchOrders(): vector<int> const

+getParent(v: int): int const

+getNumberOfVerticesFound(): int const

+getPath(v: int): vector<int> const

+printTree(): void const

The root of the tree.

parent[i] stores the parent of vertex i in the tree.

The orders for traversing the vertices.

Constructs an emtpy tree.

Constructs a tree with the specified root, parent, and
searchOrders .

Constructs a tree with the specified root, parent.

Returns the root of the tree.

Returns the order of vert ices searched.

Returns the parent of vertex v.

Returns the number of vertices searched.

Returns a path of all vertices leading to the root from v.
The return values are in a vector.

Displays tree with the root and all edges.

Figure 24.8

The Tree class describes parent-child relationship of the nodes in a tree.

28

Listing 24.4 Tree.h

 1 #ifndef TREE_H
 2 #define TREE_H
 3
 4 #include <vector>
 5 using namespace std;
 6
 7 class Tree
 8 {
 9 public:
 10 // Construct an empty tree
 11 Tree()
 12 {
 13 }
 14
 15 // Construct a tree with root, parent, and searchOrder
 16 Tree(int root, vector<int>& parent, vector<int>& searchOrders)
 17 {
 18 this->root = root;
 19 this->parent = parent;
 20 this->searchOrders = searchOrders;
 21 }
 22
 23 // Return the root of the tree
 24 int getRoot() const
 25 {
 26 return root;
 27 }
 28
 29 // Return the parent of vertex v
 30 int getParent(int v) const
 31 {
 32 return parent[v];
 33 }
 34
 35 // Return search order
 36 vector<int> getSearchOrders() const
 37 {
 38 return searchOrders;
 39 }
 40
 41 // Return number of vertices found
 42 int getNumberOfVerticesFound() const
 43 {
 44 return searchOrders.size();
 45 }
 46
 47 // Return the path of vertices from v to the root in a vector
 48 vector<int> getPath(int v) const
 49 {
 50 vector<int> path;
 51
 52 do
 53 {
 54 path.push_back(v);
 55 v = parent[v];
 56 }
 57 while (v != -1);

29

 58
 59 return path;
 60 }
 61
 62 // Print the whole tree
 63 void printTree() const
 64 {
 65 cout << "Root is: " << root << endl;
 66 cout << "Edges: ";
 67 for (unsigned i = 0; i < searchOrders.size(); i++)
 68 {
 69 if (parent[searchOrders[i]] != -1)
 70 {
 71 // Display an edge
 72 cout << "(" << parent[searchOrders[i]] << ", " <<
 73 searchOrders[i] << ") ";
 74 }
 75 }
 76 cout << endl;
 77 }
 78
 79 private:
 80 int root; // The root of the tree
 81 vector<int> parent; // Store the parent of each vertex
 82 vector<int> searchOrders; // Store the search order
 83 };
 84 #endif

The Tree class has two constructors. The no-arg constructor constructs an empty tree. The other

constructor constructs a tree with a search order (lines 16–21).

The Tree class defines seven functions. The getRoot() function returns the root of the tree (lines 24–

27). You can invoke getParent(v) to find the parent of vertex v in the search (lines 30–33). You can

get the order of the vertices searched by invoking the getSearchOrders() function (lines 36–39).

Invoking getNumberOfVerticesFound() returns the number of vertices searched (lines 42–45). The

getPath(v) function returns a path from the v to root (lines 48–60). You can display all edges in the

tree using the printTree() function (lines 63–75).

Sections 24.6 and 24.7 will introduce depth-first search and breadth-first search, respectively. Both

searches will result in an instance of the Tree class.

Check point

24.9 What function do you use to find the parent of a vertex in the tree?

30

24.6 Depth-First Search

Key Point: The depth-first search of a graph starts from a vertex in the graph and visits all vertices

in the graph as far as possible before backtracking.

The depth-first search of a graph is like the depth-first search of a tree discussed in §21.2.5, “Tree

Traversal.” In the case of a tree, the search starts from the root. In a graph, the search can start from any

vertex.

A depth-first search of a tree first visits the root, then recursively visits the subtrees of the root. Similarly,

the depth-first search of a graph first visits a vertex, then recursively visits all vertices adjacent to that

vertex. The difference is that the graph may contain cycles, which may lead to an infinite recursion. To

avoid this problem, you need to track the vertices that have already been visited and avoid visiting them

again.

The search is called depth-first, because it searches “deeper” in the graph as much as possible. The search

starts from some vertex v. After visiting v, visit an unvisited neighbor of v. If v has no unvisited neighbor,

backtrack to the vertex from which we reached v.

24.6.1 Depth-First Search Algorithm

The algorithm for the depth-first search can be described in Listing 24.5.

Listing 24.5 Depth-first Search Algorithm

Input: G = (V, E) and a starting vertex v
Output: a DFS tree rooted at v

 1 Tree dfs(vertex v)
 2 {
 3 visit v;
 4 for each neighbor w of v
 5 if (w has not been visited)
 6 {
 7 parent[w] = v;
 8 dfs(w);
 9 }
10 }

31

You may use a vector named isVisited to denote whether a vertex has been visited. Initially,

isVisited[i] is false for each vertex i. Once a vertex, say v, is visited, isVisited[v] is set to

true.

Consider the graph in Figure 24.9a. Suppose you start the depth-first search from vertex 0. First visit 0,

then any of its neighbors, say 1. Now 1 is visited, as shown in Figure 24.9b. Vertex 1 has three neighbors:

0, 2, and 4. Since 0 has already been visited, you will visit either 2 or 4. Let us pick 2. Now 2 is visited, as

shown in Figure 24.9c. 2 has three neighbors: 0, 1, and 3. Since 0 and 1 have already been visited, pick 3. 3

is now visited, as shown in Figure 24.9d. At this point, the vertices have been visited in this order:

0, 1, 2, 3

Since all the neighbors of 3 have been visited, backtrack to 2. Since all the vertices of 2 have been visited,

backtrack to 1. 4 is adjacent to 1, but 4 has not been visited. So, visit 4, as shown in Figure 24.9e. Since all

the neighbors of 4 have been visited, backtrack to 1. Since all the neighbors of 1 have been visited,

backtrack to 0. Since all the neighbors of 0 have been visited, the search ends.

0 1

2

3 4

0 1

2

3 4

0 1

2

3 4

 (a) (b) (c)

32

0 1

2

3 4

0 1

2

3 4

 (d) (e)

Figure 24.9

Depth-first search visits a node and its neighbors recursively.

Since each edge and each vertex is visited only once, the time complexity of the dfs function is O(|E| +

|V|), where |E| denotes the number of edges and |V| the number of vertices.

24.6.2 Implementation of Depth-First Search

The algorithm is described in Listing 24.5, using recursion. It is natural to use recursion to implement it.

Alternatively, you can use a stack (see Programming Exercise 24.4).

The dfs(int v) function is implemented in lines 245–265 in Listing 24.3. It returns an instance of the

Tree class with vertex v as the root. The function stores the vertices searched in a list searchOrders

(line 248), the parent of each vertex in an array parent (line 249), and uses the isVisited array to

indicate whether a vertex has been visited (line 254). It invokes the helper function dfs(v, parent,

searchOrders, isVisited) to perform a depth-first search (line 261).

In the recursive helper function, the search starts from vertex v. v is added to searchOrders (line 272)

and is marked visited (line 273). For each unvisited neighbor of v, the function is recursively invoked to

perform a depth-first search. When a vertex i is visited, the parent of i is stored in parent[i] (line

33

280). The function returns when all vertices are visited for a connected graph, or in a connected

component.

Listing 24.6 gives a test program that displays a DFS for the graph in Figure 24.1, starting from Chicago.

Listing 24.6 TestDFS.cpp

 1 #include <iostream>
 2 #include <string>
 3 #include <vector>
 4 #include "Graph.h" // Defined in Listing 24.2
 5 #include "Edge.h" // Defined in Listing 24.1
 6 #include "Tree.h" // Defined in Listing 24.4
 7 using namespace std;
 8
 9 int main()
 10 {
 11 // Vertices for graph in Figure 24.1
 12 string vertices[] = {"Seattle", "San Francisco", "Los Angeles",
 13 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 14 "Atlanta", "Miami", "Dallas", "Houston"};
 15
 16 // Edge array for graph in Figure 24.1
 17 int edges[][2] = {
 18 {0, 1}, {0, 3}, {0, 5},
 19 {1, 0}, {1, 2}, {1, 3},
 20 {2, 1}, {2, 3}, {2, 4}, {2, 10},
 21 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
 22 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
 23 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
 24 {6, 5}, {6, 7},
 25 {7, 4}, {7, 5}, {7, 6}, {7, 8},
 26 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
 27 {9, 8}, {9, 11},
 28 {10, 2}, {10, 4}, {10, 8}, {10, 11},
 29 {11, 8}, {11, 9}, {11, 10}
 30 };
 31 const int NUMBER_OF_EDGES = 46; // 46 edges in Figure 24.1
 32
 33 // Create a vector for vertices
 34 vector<string> vectorOfVertices(12);
 35 copy(vertices, vertices + 12, vectorOfVertices.begin());
 36
 37 Graph<string> graph(vectorOfVertices, edges, NUMBER_OF_EDGES);
 38 Tree dfs = graph.dfs(5); // Vertex 5 is Chicago
 39
 40 vector<int> searchOrders = dfs.getSearchOrders();
 41 cout << dfs.getNumberOfVerticesFound() <<
 42 " vertices are searched in this DFS order:" << endl;
 43 for (unsigned i = 0; i < searchOrders.size(); i++)
 44 cout << graph.getVertex(searchOrders[i]) << " ";
 45 cout << endl << endl;
 46

34

 47 for (unsigned i = 0; i < searchOrders.size(); i++)
 48 if (dfs.getParent(i) != -1)
 49 cout << "parent of " << graph.getVertex(i) <<
 50 " is " << graph.getVertex(dfs.getParent(i)) << endl;
 51
 52 return 0;
 53 }

Sample output

12 vertices are searched in this DFS order:
 Chicago Seattle San Francisco Los Angeles Denver Kansas City
 New York Boston Atlanta Miami Houston Dallas

parent of Seattle is Chicago
parent of San Francisco is Seattle
parent of Los Angeles is San Francisco
parent of Denver is Los Angeles
parent of Kansas City is Denver
parent of Boston is New York
parent of New York is Kansas City
parent of Atlanta is New York
parent of Miami is Atlanta
parent of Dallas is Houston
parent of Houston is Miami

The program creates a graph for Figure 24.1 in line 37 and obtains a DFS tree starting from vertex

Chicago in line 38. The search order is obtained in line 40. The graphical illustration of the DFS starting

from Chicago is shown in Figure 24.10.

Seattle

San Francisco

Los Angeles

Denver

Chicago

Kansas City

Houston

Boston

New York

Atlanta

Miami

661

888

1187

810

Dallas

1331

2097

1003
807

381

1015

1267

1663

1435

239

496

781

864

1260

983

787

214

533

599

Figure 24.10

35

DFS search starts from Chicago.

Note it is not necessary to include Tree.h and Edge.h, because these two header files are already included

in Graph.h.

24.6.3 Applications of the DFS

The depth-first search can be used to solve many problems, such as the following:

 Detecting whether a graph is connected. Search the graph starting from any vertex. If the number

of vertices searched is the same as the number of vertices in the graph, the graph is connected. Otherwise,

the graph is not connected.

 Detecting whether there is a path between two vertices.

 Finding a path between two vertices.

 Finding all connected components. A connected component is a maximal connected subgraph in

which every pair of vertices are connected by a path.

 Detecting whether there is a cycle in the graph.

 Finding a cycle in the graph.

The first four problems can be easily solved using the dfs function in Listing 24.3. To detect or find a

cycle in the graph, you have to slightly modify the dfs function.

Check point

24.10 What is depth-first search?

24.11 Draw a DFS tree for the graph in Figure 24.3b starting from node A.

24.12 Draw a DFS tree for the graph in Figure 24.1 starting from vertex Atlanta.

24.13 What is the return type from invoking dfs(v)?

24.14 The depth-first search algorithm described in Listing 24.8 uses recursion. Alternatively, you can

use a stack to implement it, as shown below. Point out the error in this algorithm and give a correct

algorithm.

// Wrong version

36

Tree dfs(vertex v)

{

 push v into the stack;

 mark v visited;

 while (the stack is not empty)

 {

 pop a vertex, say u, from the stack

 visit u;

 for each neighbor w of u

 if (w has not been visited)

 push w into the stack;

 }

}

24.7 Breadth-First Search

Key Point: The breadth-first search of a graph visits the vertices level by level. The first level

consists of the starting vertex. Each next level consists of the vertices adjacent to the vertices in the

preceding level.

The breadth-first traversal of a graph is like the breadth-first traversal of a tree discussed in §21.2.5, “Tree

Traversal.” With breadth-first traversal of a tree, the nodes are visited level by level. First the root is

visited, then all the children of the root, then the grandchildren of the root from left to right, and so on.

Similarly, the breadth-first search of a graph first visits a vertex, then all its adjacent vertices, then all the

vertices adjacent to those vertices, and so on. To ensure that each vertex is visited only once, skip a vertex

if it has already been visited.

24.7.1 Breadth-First Search Algorithm

The algorithm for the breadth-first search starting from vertex v in a graph is described in Listing 24.7.

Listing 24.7 Breadth-first Search Algorithm

Input: G = (V, E) and a starting vertex v

37

Output: a BFS tree rooted at v

 1 Tree bfs(vertex v)
 2 {
 3 create an empty queue for storing vertices to be visited;
 4 add v into the queue;
 5 mark v visited;
 6
 7 while the queue is not empty
 8 {
 9 dequeue a vertex, say u, from the queue
10 visit u;
11 for each neighbor w of u
12 if w has not been visited
13 {
14 add w into the queue;
15 mark w visited;
16 parent[w] = v;
17 }
18 }
19 }

Consider the graph in Figure 24.11a. Suppose you start the breadth-first search from vertex 0. First visit 0,

then all its visited neighbors, 1, 2, and 3, as shown in 24.11b. Vertex 1 has three neighbors, 0, 2, and 4.

Since 0 and 2 have already been visited, you will now visit just 4, as shown in Figure 24.11c. Vertex 2 has

three neighbors, 0, 1, and 3, which have all been visited. Vertex 3 has three neighbors, 0, 2, and 4, which

have all been visited. Vertex 4 has two neighbors, 1 and 3, which have all been visited. So, the search ends.

0 1

2

3 4

0 1

2

3 4

0 1

2

3 4

 (a) (b) (c)

Figure 24.11

Breadth-first search visits a node, then its neighbors, and then its neighbors’ neighbors, and so on.

Since each edge and vertex is visited only once, the time complexity of the bfs function is O(|E| +

|V|), where |E| denotes the number of edges and |V| the number of vertices.

38

24.7.2 Implementation of Breadth-First Search

The bfs(int v) function is defined in Listing 24.3 (lines 286–317). It returns an instance of the Tree

class with vertex v as the root. The function stores the vertices searched in a list searchOrders (line

289), the parent of each vertex in an array parent (line 290), stores the vertices to be visited in a queue

(line 294), and uses the isVisited array to indicate whether a vertex has been visited (line 295). The

search starts from vertex v. v is added to the queue (line 296) and is marked visited (line 297). The

function now examines each vertex u in the queue (line 299) and adds it to searchOrders (line 303).

The function adds each unvisited neighbor w of u to the queue (line 309), set its parent to u (line 310), and

mark it visited (line 311).

Listing 24.8 gives a test program that displays a BFS for the graph in Figure 24.1, starting from Chicago.

Listing 24.8 TestBFS.cpp

 1 #include <iostream>
 2 #include <string>
 3 #include <vector>
 4 #include "Graph.h" // Defined in Listing 24.2
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // Vertices for graph in Figure 24.1
 10 string vertices[] = {"Seattle", "San Francisco", "Los Angeles",
 11 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 12 "Atlanta", "Miami", "Dallas", "Houston"};
 13
 14 // Edge array for graph in Figure 24.1
 15 int edges[][2] = {
 16 {0, 1}, {0, 3}, {0, 5},
 17 {1, 0}, {1, 2}, {1, 3},
 18 {2, 1}, {2, 3}, {2, 4}, {2, 10},
 19 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
 20 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
 21 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
 22 {6, 5}, {6, 7},
 23 {7, 4}, {7, 5}, {7, 6}, {7, 8},
 24 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
 25 {9, 8}, {9, 11},
 26 {10, 2}, {10, 4}, {10, 8}, {10, 11},
 27 {11, 8}, {11, 9}, {11, 10}
 28 };
 29 const int NUMBER_OF_EDGES = 46; // 46 edges in Figure 24.1

39

 30
 31 // Create a vector for vertices
 32 vector<string> vectorOfVertices(12);
 33 copy(vertices, vertices + 12, vectorOfVertices.begin());
 34
 35 Graph<string> graph(vectorOfVertices, edges, NUMBER_OF_EDGES);
 36 Tree dfs = graph.bfs(5); // Vertex 5 is Chicago
 37
 38 vector<int> searchOrders = dfs.getSearchOrders();
 39 cout << dfs.getNumberOfVerticesFound() <<
 40 " vertices are searched in this BFS order:" << endl;
 41 for (unsigned i = 0; i < searchOrders.size(); i++)
 42 cout << graph.getVertex(searchOrders[i]) << " ";
 43 cout << endl << endl;
 44
 45 for (unsigned i = 0; i < searchOrders.size(); i++)
 46 if (dfs.getParent(i) != -1)
 47 cout << "parent of " << graph.getVertex(i) <<
 48 " is " << graph.getVertex(dfs.getParent(i)) << endl;
 49
 50 return 0;
 51 }

Sample output

12 vertices are searched in this BFS order:
 Chicago Seattle Denver Kansas City Boston New York
 San Francisco Los Angeles Atlanta Dallas Miami Houston

parent of Seattle is Chicago
parent of San Francisco is Seattle
parent of Los Angeles is Denver
parent of Denver is Chicago
parent of Kansas City is Chicago
parent of Boston is Chicago
parent of New York is Chicago
parent of Atlanta is Kansas City
parent of Miami is Atlanta
parent of Dallas is Kansas City
parent of Houston is Atlanta

The program creates a graph for Figure 24.1 in line 35 and obtains a DFS tree starting from vertex Chicago

in line 36. The search order is obtained in line 38. The graphical illustration of the BFS starting from

Chicago is shown in Figure 24.12.

40

Seattle

San Francisco

Los Angeles

Denver

Chicago

Kansas City

Houston

Boston

New York

Atlanta

Miami

661

888

1187

810

Dallas

1331

2097

1003
807

381

1015

1267

1663

1435

239

496

781

864

1260

983

787

214

533

599

Figure 24.12

BFS search starts from Chicago.

24.7.3 Applications of the BFS

Many of the problems solved by the DFS can also be solved using the breadth-first search. Specifically, the

BFS can be used to solve the following problems:

 Detecting whether a graph is connected. A graph is connected if there is a path between any two

vertices in the graph.

 Detecting whether there is a path between two vertices.

 Finding a shortest path between two vertices. You can prove that the path between the root and

any node in the BFS tree is the shortest path between the root and the node (see Review Question 24.10).

 Finding all connected components. A connected component is a maximal connected subgraph in

which every pair of vertices are connected by a path.

41

 Detecting whether there is a cycle in the graph.

 Finding a cycle in the graph.

 Testing whether a graph is bipartite. A graph is bipartite if its vertices can be divided into two

disjoint sets such that no edges exist between vertices in the same set.

Check point

24.15 What is the return type from invoking bfs(v)?

24.16 What is breadth-first search?

24.17 Draw a BFS tree for the graph in Figure 24.3b starting from node A.

24.18 Draw a BFS tree for the graph in Figure 24.1 starting from vertex Atlanta.

24.19 Prove that the path between the root and any node in the BFS tree is the shortest path between the

root and the node.

24.8 Case Study: The Nine Tail Problem

Key Point: The nine tails problem can be reduced to the shortest path problem.

The DFS and BFS algorithms have many applications. This section applies the BFS to solve the nine tail

problem.

The problem is stated as follows. Nine coins are placed in a three-by-three matrix with some face up and

some face down. A legal move is to take any coin that is face up and reverse it, together with the coins

adjacent to it (this does not include coins that are diagonally adjacent). Your task is to find the minimum

number of moves that lead to all coins being face down. For example, you start with the nine coins as

shown in Figure 24.13a. After flipping the second coin in the last row, the nine coins are now as shown in

Figure 24.13b. After flipping the second coin in the first row, the nine coins are all face down, as shown in

24.13c.

H
T T T

H H

H H H

H
T H T

H H

T T T

T
T T T

T T

T T T

 (a) (b) (c)

42

Figure 24.13

The problem is solved when all coins are face down.

We will write a C++ program that prompts the user to enter an initial state of the nine coins and displays

the solution, as shown in the following sample run.

Sample output

Enter an initial nine coin H and T's:
HHH
TTT
HHH

The steps to flip the coins are
HHH
TTT
HHH

HHH
THT
TTT

TTT
TTT
TTT

Each state of the nine coins represents a node in the graph. For example, the three states in Figure 24.13

correspond to three nodes in the graph. Intuitively, you can use a 3 × 3 matrix to represent all nodes and

use 0 for head and 1 for tail. Since there are nine cells and each cell is either 0 or 1, there are a total of

92 (512) nodes, labeled 0, 1, ..., and 511, as shown in Figure 24.14.

 0 0 0
 0 0 0
 0 0 0

 0 0 0
 0 0 0
 0 0 1

 0 0 0
 0 0 0
 0 1 0

 0 0 0
 0 0 0
 0 1 1

…..

 1 1 1
 1 1 1
 1 1 1

 0 1 2 3 512

Figure 24.14

There are total of 512 nodes, labeled in this order as 0, 1, 2, ..., and 511.

43

We assign an edge from node u to v if there is a legal move from v to u. Figure 24.15 shows the directed

edges to node 56.

 408 488 240 30 47 51

 1 1 0
 0 1 1
 0 0 0

 1 1 1
 1 0 1
 0 0 0

 0 1 1
 1 1 0
 0 0 0

 0 0 0
 0 1 1
 1 1 0

 0 0 0
 1 0 1
 1 1 1

 0 0 0
 1 1 0
 0 1 1

 0 0 0
 1 1 1
 0 0 0

 56

Figure 24.15

If node v becomes node u after flipping cells, assign an edge from u to v.

The last node in Figure 24.14 represents the state of nine face-down coins. For convenience, we call this

last node the target node. So, the target node is labeled 511. Suppose the initial state of the nine tail

problem corresponds to the node s. The problem is reduced to finding a shortest path from the target node

to s in a BFS tree rooted at the target node.

Now the task is to build a graph that consists of 512 nodes labeled 0, 1, 2, ..., 511, and edges among the

nodes. Once the graph is created, obtain a BFS tree rooted at node 511. From the BFS tree, you can find

the shortest path from the root to any vertex. We will create a class named NineTailModel, which

contains the function to get the shortest path from the target node to any other node. The class UML

diagram is shown in Figure 24.16.

44

 NineTailModel

#tree: Tree*

+NineTailMod el()

+getShortes tPath(nodeIndex: int):

vector<int>

+getNode(index: int): vector<char>

+getIndex(node: vector<char>&): int

+printNode(node: vector<char>&): void

#getEdges(): vector<Edge> const

#getFl ippedNode(node: vector<char>&,
pos ition: int): int const

#flipACell(node: vector<char>&, row: int,
column: int): void

A tree rooted at node 511.

Cons tructs a model for the nine tai l problem and obtains the
tree.

Returns a path from the specified node to the root . The path
returned consists of the node labels in a vector.

Returns a n ode con sisting of nine characters of H’s and T’s.

Returns the index of the specified node.

Displays the node to the console.

Returns a vector of Edge objects for the graph.

Fl ips the node at the specified position and returns the index
of the flipped node.

Fl ips the node at the specified row and column .

Figure 24.16

The NineTailModel class models the Nine Tail problem using a graph.

Visually, a node is represented in a 3 × 3 matrix with letters H and T. In a C++ program, you can use a

vector of nine characters to represent a node. The getNode(index) function returns the node for the

specified index. For example, getNode(0) returns the node that contains nine H’s. getNode(511)

returns the node that contains nine T’s. The getIndex(node) function returns the index of the node.

The printNode(node) function displays the node visually on the console.

Note that the data field tree and functions getEdges(), getFlippedNode(node, position),

and flipACell(&node, row, column) are defined protected so that they can be accessed from

child classes in the next chapter.

The getEdges() function returns a vector of Edge objects.

The getFlippedNode(node, position) function flips the node at the specified position and

returns the index of the new node. For example, for node 56 in Figure 24.16, flip it at position 0, and you

will get node 51. If you flip node 56 at position 1, you will get node 47.

45

The flipACell(&node, row, column) function flips a node at the specified row and column. For

example, if you flip node 56 at row 0 and column 0, the new node is 408. If you flip node 56 at row 2

and column 0, the new node is 30.

Listing 24.9 shows the source code for NineTailModel.h.

Listing 24.9 NineTailModel.h

 1 #ifndef NINETAILMODEL_H
 2 #define NINETAILMODEL_H
 3
 4 #include <iostream>
 5 #include "Graph.h" // Defined in Listing 24.2
 6
 7 using namespace std;
 8
 9 const int NUMBER_OF_NODES = 512;
 10
 11 class NineTailModel
 12 {
 13 public:
 14 // Construct a model for the Nine Tail problem
 15 NineTailModel();
 16
 17 // Return the index of the node
 18 int getIndex(vector<char>& node) const;
 19
 20 // Return the node for the index
 21 vector<char> getNode(int index) const;
 22
 23 // Return the shortest path of vertices from the specified
 24 // node to the root
 25 vector<int> getShortestPath(int nodeIndex) const;
 26
 27 // Print a node to the console
 28 void printNode(vector<char>& node) const;
 29
 30 protected:
 31 Tree* tree;
 32
 33 // Return a vector of Edge objects for the graph
 34 // Create edges among nodes
 35 vector<Edge> getEdges() const;
 36
 37 // Return the index of the node that is the result of flipping
 38 // the node at the specified position
 39 int getFlippedNode(vector<char>& node, int position) const;
 40
 41 // Flip a cell at the specified row and column
 42 void flipACell(vector<char>& node, int row, int column) const;
 43 };
 44
 45 NineTailModel::NineTailModel()
 46 {
 47 // Create edges
 48 vector<Edge> edges = getEdges();

46

 49
 50 // Build a graph
 51 Graph<int> graph(NUMBER_OF_NODES, edges);
 52
 53 // Build a BFS tree rooted at the target node
 54 tree = new Tree(graph.bfs(511));
 55 }
 56
 57 vector<Edge> NineTailModel::getEdges() const
 58 {
 59 vector<Edge> edges;
 60
 61 for (int u = 0; u < NUMBER_OF_NODES; u++)
 62 {
 63 for (int k = 0; k < 9; k++)
 64 {
 65 vector<char> node = getNode(u);
 66 if (node[k] == 'H')
 67 {
 68 int v = getFlippedNode(node, k);
 69 // Add edge (v, u) for a legal move from node u to node v
 70 edges.push_back(Edge(v, u));
 71 }
 72 }
 73 }
 74
 75 return edges;
 76 }
 77
 78 int NineTailModel::getFlippedNode(vector<char>& node, int position)
 79 const
 80 {
 81 int row = position / 3;
 82 int column = position % 3;
 83
 84 flipACell(node, row, column);
 85 flipACell(node, row - 1, column);
 86 flipACell(node, row + 1, column);
 87 flipACell(node, row, column - 1);
 88 flipACell(node, row, column + 1);
 89
 90 return getIndex(node);
 91 }
 92
 93 void NineTailModel::flipACell(vector<char>& node,
 94 int row, int column) const
 95 {
 96 if (row >= 0 && row <= 2 && column >= 0 && column <= 2)
 97 { // Within boundary
 98 if (node[row * 3 + column] == 'H')
 99 node[row * 3 + column] = 'T'; // Flip from H to T
100 else
101 node[row * 3 + column] = 'H'; // Flip from T to H
102 }
103 }
104
105 int NineTailModel::getIndex(vector<char>& node) const
106 {
107 int result = 0;
108

For example:
node: THHHHHHTT
index: 259

T H H
H H H
H T T

H

column

row
flip

47

109 for (int i = 0; i < 9; i++)
110 if (node[i] == 'T')
111 result = result * 2 + 1;
112 else
113 result = result * 2 + 0;
114
115 return result;
116 }
117
118 vector<char> NineTailModel::getNode(int index) const
119 {
120 vector<char> result(9);
121
122 for (int i = 0; i < 9; i++)
123 {
124 int digit = index % 2;
125 if (digit == 0)
126 result[8 - i] = 'H';
127 else
128 result[8 - i] = 'T';
129 index = index / 2;
130 }
131
132 return result;
133 }
134
135 vector<int> NineTailModel::getShortestPath(int nodeIndex) const
136 {
137 return tree->getPath(nodeIndex);
138 }
139
140 void NineTailModel::printNode(vector<char>& node) const
141 {
142 for (int i = 0; i < 9; i++)
143 if (i % 3 != 2)
144 cout << node[i];
145 else
146 cout << node[i] << endl;
147
148 cout << endl;
149 }
150
151 #endif

The constructor (lines 45–55) creates a graph with 512 nodes, and each edge corresponds to the move from

one node to the other (line 48). From the graph, a BFS tree rooted at the target node 511 is obtained and

assigned to a pointer variable tree (line 54). We use a pointer for tree to enable tree to reference any

type of Tree. Later in the next chapter, we will assign a ShortestPathTree to tree and

ShortestPathTree is a subtype of Tree.

For example:
node: THHHHHHTT
index: 259

T H H
H H H
H T T

For example:
node: THHHHHHTT
output:

T H H
H H H
H T T

48

To create edges, the getEdges function (lines 57–76) checks each node u to see if it can be flipped to

another node v. If so, add (v, u) to the Edge vector (line 70). The getFlippedNode(node,

position) function finds a flipped node by flipping an H cell and its neighbors in a node (lines 78–91).

The flipACell(node, row, column) function actually flips an H cell and its neighbors in a node

(lines 93–103).

Note that the argument node is passed by value in getFlippedNode(node, position). What

would happen if it is mistakenly passed by reference? After invoking getFlippedNode(node, k)

line 68, the contents of node will be changed and node no longer corresponds to vertex u.

The getIndex(node) function is implemented in the same way as converting a binary number to a

decimal (lines 105–116). The getNode(index) function returns a node consisting of letters H and T’s

(lines 118–133).

The getShortestpath(nodeIndex) function invokes the getPath(nodeIndex) function to get

the vertices in the shortest path from the specified node to the target node (lines 135–138).

Listing 24.10 gives a program that prompts the user to enter an initial node and displays the steps to reach

the target node.

Listing 24.10 NineTail.cpp

 1 #include <iostream>
 2 #include <vector>
 3 #include "NineTailModel.h"
 4 using namespace std;
 5
 6 int main()
 7 {
 8 // Prompt the user to enter nine coins H and T's
 9 cout << "Enter an initial nine coin H’s and T's: ";
 10 vector<char> initialNode(9);
 11
 12 for (int i = 0; i < 9; i++)
 13 cin >> initialNode[i];
 14

49

 15 cout << "The steps to flip the coins are " << endl;
 16 NineTailModel model;
 17 vector<int> path =
 18 model.getShortestPath(model.getIndex(initialNode));
 19
 20 for (unsigned i = 0; i < path.size(); i++)
 21 model.printNode(model.getNode(path[i]));
 22
 23 return 0;
 24 }

The program prompts the user to enter an initial node with nine letters
H’s and T’s in lines 9–13, creates a model to create a graph and get the
BFS tree (line 16), obtains a shortest path from the initial node to the
target node (lines 16–17), and displays the nodes in the path (lines 17–
18).

Check point

24.20 How are the nodes created for the graph in NineTailModel?

24.21 How are the edges created for the graph in NineTailModel?

24.22 What is returned after invoking getIndex("HTHTTTHHH".toCharArray()) in Listing

24.13? What is returned after invoking getNode(46) in Listing 24.13?

24.23 The statement in line 66 in Listing 24.13 NineTailModel.cpp is

 vector<char> node = getNode(u);

 Will the program work if it is moved to before line 64? Explain the reason.

24.25 If the flipACell function in NineTailModel.h is redefined as follows:

void flipACell(vector<char> node, int row, int column);

 what is wrong?

Key Terms

 adjacency list

 adjacent vertices

 adjacency matrix

 breadth-first search

 complete graph

 degree

50

 depth-first search

 directed graph

 graph

 incident edges

 parallel edge

 Seven Bridges of Königsberg

 simple graph

 spanning tree

 weighted graph

 undirected graph

 unweighted graph

Chapter Summary

1. A graph is a useful mathematical structure that represents relationships among entities in the real

world.

2. A graph may be directed or undirected. In a directed graph, each edge has a direction, which

indicates that you can move from one vertex to the other through the edge.

3. Edges may be weighted or unweighted. A weighted graph has weighted edges.

4. You can model graphs using classes and interfaces.

5. You can represent vertices and edges using arrays and linked lists.

6. Graph traversal is the process of visiting each vertex in the graph exactly once. Two popular ways

of traversing a graph are depth-first search and breadth-first search.

7. The depth-first search of a graph first visits a vertex, then recursively visits all unvisited vertices

adjacent to that vertex.

8. The breadth-first search of a graph first visits a vertex, then all its adjacent unvisited vertices, then

all the unvisited vertices adjacent to those vertices, and so on.

51

9. DFS and BFS can be used to solve many problems, such as detecting whether a graph is

connected, detecting whether there is a cycle in the graph, and finding a shortest path between two

vertices.

Quiz

Do the quiz for this chapter online at www.cs.armstrong.edu/liang/cpp3e/quiz.html.

Programming Exercises

Sections 24.6-24.7

 24.1* (Test whether a graph is connected) Write a program that reads a graph from a file and determines

whether the graph is connected. The first line in the file contains a number that indicates the number of

vertices (n). The vertices are labeled as 0, 1, ..., n-1. Each subsequent line, with the format u: v1, v2,

..., describes edges (u, v1), (u, v2), etc. Figure 24.17 gives the examples of two files for their

corresponding graphs.

 File
6
0: 1, 2
1: 0, 3
2: 0, 3, 4
3: 1, 2, 4, 5
4: 2, 3, 5
5: 3, 4

0

2 3

1

4 5

 File
6
0: 1, 2, 3
1: 0, 3
2: 0, 3
3: 0, 1, 2
4: 5
5: 4

0

2 3

1

4 5

 (a) (b)

Figure 24.17

The vertices and edges of a graph can be stored in a file.

Your program should prompt the user to enter the name of the file, reads data from a file, creates an

instance g of Graph, invokes g.printEdges() to display all edges, and invokes dfs(0) to obtain an

52

instance tree of Tree. If tree.getNumberOfVerticeFound() is the same as the number of

vertices in the graph, the graph is connected. Here is a sample run of the program:

Sample output

Enter a file name: c:\exercise\Exercise24_1a.txt
The number of vertices is 6
Vertex 0: (0, 1) (0, 2)
Vertex 1: (1, 0) (1, 3)
Vertex 2: (2, 0) (2, 3) (2, 4)
Vertex 3: (3, 1) (3, 2) (3, 4) (3, 5)
Vertex 4: (4, 2) (4, 3) (4, 5)
Vertex 5: (5, 3) (5, 4)
The graph is connected

(Hint: Use Graph(numberOfVertices, vectorOfEdges) to create a graph, where

vectorOfEdges contains a vector of Edge objects. Use Edge(u, v) to create an edge. Read the first

line to get the number of vertices. Read each subsequent line to extract the vertices from the string and

creates edges from the vertices.)

 24.2* (Create a file for graph) Modify Listing 24.2, TestGraph.cpp, to create a file for representing

graph1. The file format is described in Exercise 24.1. Create the file from the array defined in lines 16-29

in Listing 24.2. The number of vertices for the graph is 12, which will be stored in the first line of the file.

The contents of the file should be as follows:

12

0: 1, 3, 5

1: 0, 2, 3

2: 1, 3, 4, 10

3: 0, 1, 2, 4, 5

4: 2, 3, 5, 7, 8, 10

5: 0, 3, 4, 6, 7

6: 5, 7

7: 4, 5, 6, 8

8: 4, 7, 9, 10, 11

53

9: 8, 11

10: 2, 4, 8, 11

11: 8, 9, 10

 24.3* (Find a shortest path) Write a program that reads a connected graph from a file. The graph is stored

in a file using the same format specified in Exercise 24.1. Your program should prompt the user to enter

the name of the file, then two vertices, and displays the shortest path between the two vertices. For

example, for the graph in Figure 24.17a, a shortest path between 0 and 5 may be displayed as 0 1 3 5.

Here is a sample run of the program:

Sample output

Enter a file name: c:\exercise\Exercise24_3a.txt

Enter two vertices (integer indexes): 0 5
The number of vertices is 6
Vertex 0: (0, 1) (0, 2)
Vertex 1: (1, 0) (1, 3)
Vertex 2: (2, 0) (2, 3) (2, 4)
Vertex 3: (3, 1) (3, 2) (3, 4) (3, 5)
Vertex 4: (4, 2) (4, 3) (4, 5)
Vertex 5: (5, 3) (5, 4)
The path is 0 1 3 5

 24.4* (Implementing DFS using a stack) The depth-first search algorithm described in Listing 24.5 uses

recursion. Implement it without using recursion.

 24.5* (Find connected components) Add a new function in the Graph class to find all connected

components in a graph with the following header:

vector<vector<int>> getConnectedComponents();

 The function returns a vector. Each element in the vector is another vector that contains all the vertices in a

connected component. For example, if the graph has three connected components, the function returns a

vector with three elements, each of which contains the vertices in a connected component.

54

 24.6* (Find paths) Add a new function in Graph to find a path between two vertices with the following

header:

vector<int> getPath(int u, int v);

 The function returns a vector that contains all the vertices in a path from u to v in this order. Using the

BFS approach, you can obtain a shortest path from u to v. If there is no path from u to v, the function

returns an empty vector.

 24.7* (Detect cycles) Add a new function in Graph to determine whether there is a cycle in the graph with

the following header:

bool containsCyclic();

 24.8* (Find a cycle) Add a new function in Graph to find a cycle in the graph with the following header:

vector<int> getACycle();

 The function returns a vector that contains all the vertices in a cycle from u to v in this order. If the graph

has no cycles, the function returns an empty vector.

 24.9** (Test bipartite) Recall that a graph is bipartite if its vertices can be divided into two disjoint sets

such that no edges exist between vertices in the same set. Add a new function in Graph to detect whether

the graph is bipartite:

bool isBipartite();

 24.10** (Get bipartite sets) Add a new function in Graph to return two bipartite sets if the graph is

bipartite:

vector<vector<int>> getBipartiteSets();

 The function returns a vector. Each element in the vector is another vector that contains a set of vertices.

55

 24.11** (Variation of the nine tail problem) In the nine tail problem, when you flip a head, the horizontal

and vertical neighboring cells are also flipped. Rewrite the program, assuming that all neighboring cells

including the diagonal neighbors are also flipped.

 24.12** (4 × 4 16 tail model) The nine tail problem in the text uses a 3 × 3 matrix. Assume that you have

16 coins placed in a 4 × 4 matrix. Create a new model class named TailModel16. Create an instance of

the model and save the object into a file named Exercise24_12.dat.

 24.13** (Induced subgraph) Given an undirected graph G = (V, E) and an integer k, find an induced

subgraph H of G of maximum size such that all vertices of H have degree >= k, or conclude that no such

induced subgraph exists. Implement the function with the following header:

Graph<V> maxInducedSubgraph(Graph<V> g, int k)

The function returns an empty graph if such subgraph does not exist.

(Hint: An intuitive approach is to remove vertices whose degree is less than k. As vertices are removed

with their adjacent edges, the degrees of other vertices may be reduced. Continue the process until no

vertices can be removed, or all the vertices are removed.)

