CHAPTER 24

Graphs and Applications

Objectives

- To model real-world problems using graphs and explain the Seven Bridges of Königsberg problem (§24.1).
- To describe graph terminologies: vertices, edges, simple graphs, weighted/unweighted graphs, and directed/undirected graphs (§24.2).
- To represent vertices and edges using lists, adjacent matrices, and adjacent lists (§24.3).
- To model graphs using the Graph class (§24.4).
- To represent the traversal of a graph using the Tree class (§24.5).
- To design and implement depth-first search (§24.6).
- To design and implement breadth-first search (§24.7).
- To solve the nine-tail problem using breadth-first search (§24.8).

24.1 Introduction

Key Point: Many real-world problems can be solved using graph algorithms.
Graphs play an important role in modeling real-world problems. For example, the problem to find a shortest path between two cities can be modeled using a graph, where the vertices represent cities and the edges represent the roads and distances between two adjacent cities, as shown in Figure 24.1. The problem of finding a shortest path between two cities is reduced to finding a shortest path between two vertices in a graph.

Figure 24.1

A graph can be used to model the distance between the cities.

The study of graph problems is known as graph theory. Graph theory was founded by Leonard Euler in 1736, when he introduced graph terminology to solve the famous Seven Bridges of Königsberg problem. The city of Königsberg, Prussia, (now Kaliningrad, Russia) was divided by the Pregel River. There were two islands on the river. The city and islands were connected by seven bridges, as shown in Figure 24.2a. The question is, can one take a walk, cross each bridge exactly once, and return to the starting point? Euler proved that it was not possible.

Figure 24.2
Seven bridges connecting islands and land.

To establish a proof, Euler first abstracted the Königsberg city map into the sketch shown in Figure 24.2a, by eliminating all streets. Second, he replaced each land mass with a dot, called a vertex or a node, and each bridge with a line, called an edge, as shown in Figure 24.2 b. This structure with vertices and edges is called a graph.

Looking at the graph, we ask whether there is a path starting from any vertex, traversing all edges exactly once, and returning to the starting vertex. Euler proved that for such path to exist, each vertex must have an even number of edges. Therefore, the Seven Bridges of Königsberg problem has no solution.

Graph problems are often solved using algorithms. Graph algorithms have many applications in various areas, such as in computer science, mathematics, biology, engineering, economics, genetics, and social sciences. This chapter presents the algorithms for depth-first search and breadth-first search, and their applications. The next chapter presents the algorithms for finding a minimum spanning tree and shortest paths in weighted graphs, and their applications.

24.2 Basic Graph Terminologies

Key Point: A graph consists of vertices, and edges that connect the vertices.
This chapter does not assume that the reader has prior knowledge of graph theory or discrete mathematics. We use plain and simple terms to define graphs.

What is a graph? A graph is a mathematical structure that represents relationships among entities in the real world. For example, the graph is Figure 24.1 represents the roads and their distances among cities, and the graph in Figure 24.2b represents the bridges among land masses.

A graph consists of a nonempty set of vertices, nodes, or points, and a set of edges that connect the vertices. For convenience, we define a graph as $G=(V, E)$, where V represents a set of vertices and E a set of edges. For example, V and E for the graph in Figure 24.1 are as follows:

```
V = {"Seattle", "San Francisco", "Los Angeles",
    "Denver", "Kansas City", "Chicago", "Boston", "New York",
    "Atlanta", "Miami", "Dallas", "Houston"};
E = {{"Seattle", "San Francisco"}, {"Seattle", "Chicago"},
    };
```

A graph may be directed or undirected. In a directed graph, each edge has a direction, which indicates that you can move from one vertex to the other through the edge. You may model parent/child relationships using a directed graph, where an edge from vertex A to B indicates that A is a parent of B.

Figure 24.3a shows a directed graph. In an undirected graph, you can move in both directions between vertices. The graph in Figure 24.1 is undirected.

Figure 24.3

Graphs may appear in many forms.

Edges may be weighted or unweighted. For example, each edge in the graph in Figure 24.1 has a weight that represents the distance between two cities.

Two vertices in a graph are said to be adjacent if they are connected by the same edge. Similarly two edges are said to be adjacent if they are connected to the same vertex. An edge in a graph that joins two vertices is said to be incident to both vertices. The degree of a vertex is the number of edges incident to it.

Two vertices are called neighbors if they are adjacent. Similarly two edges are called neighbors if they are incident.

A loop is an edge that links a vertex to itself. If two vertices are connected by two or more edges, these edges are called parallel edges. A simple graph is one that has no loops and parallel edges. A complete graph is one in which every two pairs of vertices are connected, as shown in Figure 24.3b.

A graph is connected if there exists a path between any two vertices in the graph. A subgraph of a graph G is a graph whose vertex set is a subset of that of G and whose edge set is a subset of that of G. For example, the graph in Figure 24.3c is a subgraph of the graph in Figure 24.3b.

Assume that the graph is connected and undirected. A spanning tree of a graph is a subgraph that is a tree and connects all vertices in the graph.

PEDAGOGICAL NOTE

Before we introduce graph algorithms and applications, it is helpful to get acquainted with graphs using the interactive tool at www.cs.armstrong.edu/liang/animation/GraphLearningTool.html, as shown in Figure 24.4. The tool allows you to add/remove/move vertices and draw edges using mouse gestures. You can also find depth-first search (DFS) trees and breadth-first search (BFS) trees, and the shortest path between two vertices.

Figure 24.4

You can use the tool to create a graph with mouse gestures and show DFS/BFS trees and shortest paths.

Check point

24.1 What is the famous Seven Bridges of Königsberg problem?
24.2 What is a graph? Explain the following terms: undirected graph, directed graph, weighted graph, degree of a vertex, parallel edge, simple graph, complete graph, connected graph, cycle, subgraph, tree, and spanning tree.
24.3 How many edges are in a complete graph with 5 vertices? How many edges are in a tree of 5 vertices?
24.4 How many edges are in a complete graph with n vertices? How many edges are in a tree of n vertices?

24.3 Representing Graphs

Key Point: Representing a graph is to store its vertices and edges in a program. The data structure for storing a graph is arrays or lists.

To write a program that processes and manipulates graphs, you have to store or represent graphs in the computer.

24.3.1 Representing Vertices

The vertices can be stored in an array. For example, you can store all the city names in the graph in Figure
24.1 using the following array:

```
string vertices[] = {"Seattle", "San Francisco", "Los Angeles",
    "Denver", "Kansas City", "Chicago", "Boston", "New York",
    "Atlanta", "Miami", "Dallas", "Houston"};
```

NOTE:

The vertices can be objects of any type. For example, you may consider cities as objects that contain the information such as name, population, and mayor. So, you may define vertices as follows:

```
City city0("Seattle", 563374, "Greg Nickels");
City city11("Houston", 1000203, "Bill White");
City vertices[] = {city0, city1, ..., city11};
class City
{
public:
City(string& cityName, int population, string& mayor)
    {
            this->cityName = cityName;
            this->population = population;
            this->mayor = mayor;
            }
            string getCityName() const
            {
                return cityName;
    }
            int getPopulation() const
            {
                return population;
    }
            string getMayor() const
            {
            return mayor;
    }
            void setMayor(string& mayor)
            {
                this->mayor = mayor;
    }
```

```
    void setPopulation(int population)
    {
        this->population = population;
    }
private:
    string cityName;
    int population;
    string mayor;
};
```

The vertices can be conveniently labeled using natural numbers $\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{n}-\mathbf{1}$, for a graphs of n vertices. So, vertices[0] represents "Seattle", vertices[1] represents "San Francisco", and so on, as shown in Figure 24.4.

vertices[0]	Seattle
vertices[1]	San Francisco
vertices[2]	Los Angeles
vertices[3]	Denver
vertices[4]	Kansas City
vertices[5]	Chicago
vertices[6]	Boston
	New York
vertices[7]	Atlanta
vertices[8]	Miami
vertices[9]	Dallas
vertices[10]	Houston
vertices[11]	

Figure 24.4

An array stores the vertex names.

NOTE:
You can reference a vertex by its name or its index, whichever is convenient.
Obviously, it is easy to access a vertex via its index in a program.

The edges can be represented using a two-dimensional array. For example, you can store all the edges in the graph in Figure 24.1 using the following array:

```
int edges[][2] = {
    {0, 1}, {0, 3}, {0, 5},
    {1, 0}, {1, 2}, {1, 3},
    {2, 1}, {2, 3}, {2, 4}, {2, 10},
    {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
    {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
    {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
    {6, 5}, {6, 7},
    {7, 4}, {7, 5}, {7, 6}, {7, 8},
    {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
    {9, 8}, {9, 11},
    {10, 2}, {10, 4}, {10, 8}, {10, 11},
    {11, 8}, {11, 9}, {11, 10}
};
```

This is known as the edge representation using arrays.

24.3.3 Representing Edges (for input): Edge Objects

Another way to represent the edges is to define edges as objects and store them in a vector. The Edge class is defined in Listing 24.1:

Listing 24.1 Edge.h

```
\#ifndef EDGE_H
\#define EDGE_H
class Edge
\{
public:
    int \(u\);
    int v;
    Edge(int \(u\), int \(v\) )
    \{
        this->u \(=u\);
        this->v = v;
    \}
\};
\#endif
```

For example, you can store all the edges in the graph in Figure 24.1 using the following vector:

```
vector<Edge> edgeVector;
edgeVector.push_back(Edge(0, 1));
edgeVector.push_back(Edge(0, 3));
edgeVector.push_back(Edge(0, 5));
```

Storing Edge objects in a vector is useful if you don't know the edges in advance.

Representing edges using edge array or Edge objects in §24.3.2 and §24.3.3 is intuitive for input, but not efficient for internal processing. The next two sections introduce the representation of graphs using adjacency matrices and adjacency lists. These two data structures are efficient for processing graphs.

24.3.4 Representing Edges: Adjacency Matrices

Assume that the graph has n vertices. You can use a two-dimensional $n \times n$ matrix, say
adjacencyMatrix, to represent edges. Each element in the array is $\mathbf{0}$ or $\mathbf{1}$.
$\operatorname{adjacencyMatrix[i][j]}$ is $\mathbf{1}$ if there is an edge from vertex i to vertex j; otherwise,
adjacencyMatrix[i][j] is 0 . If the graph is undirected, the matrix is symmetric, because
adjacencyMatrix[i][j] is the same as adjacencyMatrix[j][i]. For example, the edges in
the graph in Figure 24.1 can be represented using an adjacency matrix as follows:

```
int adjacencyMatrix[12][12] = {
    {0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}, // Seattle
    {1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, // San Francisco
    {0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}, // Los Angeles
    {1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0}, // Denver
    {0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0}, // Kansas City
    {1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0}, // Chicago
    {0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0}, // Boston
    {0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0}, // New York
    {0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1}, // Atlanta
    {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1}, // Miami
    {0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1}, // Dallas
    {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0} // Houston
};
```

The adjacency matrix for the directed graph in Figure 24.3a can be represented as follows:

```
int a[5][5] = {{0, 0, 1, 0, 0}, // Peter
    {0, 0, 1, 0, 0}, // Jane
    {0, 0, 0, 0, 1}, // Mark
    {0, 0, 0, 0, 1}, // Cindy
    {0, 0, 0, 0, 0} // Wendy
    };
```

As discussed in §12.7, it is more flexible to represent arrays using vectors. When you pass an array to a function, you also have to pass its size, but when you pass a vector to a function, you don't have to pass its
size, because a vector object contains the size information. The preceding adjacency matrix can be represented using a vector as follows:

```
vector<vector<int>> a(5);
a[0] = vector<int>(5); a[1] = vector<int>(5); a[2] = vector<int>(5);
a[3] = vector<int>(5); a[4] = vector<int>(5);
a[0][0] = 0; a[0][1] = 0; a[0][2] = 1; a[0][3] = 0; a[0][4] = 0;
a[1][0] = 0; a[1][1] = 0; a[1][2] = 1; a[1][3] = 0; a[1][4] = 0;
a[2][0] = 0; a[2][1] = 0; a[2][2] = 0; a[2][3] = 0; a[2][4] = 1;
a[3][0] = 0; a[3][1] = 0; a[3][2] = 0; a[3][3] = 0; a[3][4] = 1;
a[4][0] = 0; a[4][1] = 0; a[4][2] = 0; a[4][3] = 0; a[4][4] = 0;
```


24.3.5 Representing Edges: Adjacency Lists

You can represent edges using adjacency vertex lists or adjacency edge lists. An adjacency vertex list for a vertex i contains the vertices that are adjacent to i and an adjacency edge list for a vertex i contains the edges that are adjacent to i. You may define an array of lists. The array has n entries, and each entry is a list. The adjacency vertex list for vertex i contains all the vertices j such that there is an edge from vertex i to vertex j. For example, to represent the edges in the graph in Figure 24.1, you can create an array of lists as follows:
list<int> neighbors[12];
neighbors[0] contains all vertices adjacent to vertex 0 (i.e., Seattle), neighbors [1] contains all vertices adjacent to vertex 1 (i.e., San Francisco), and so on, as shown in Figure 24.5.

Seattle	neighbors[0]	1	2	3			
San Francisco	neighbors[1]	0	2	3			
Los Angeles	neighbors[2]	1	3	4	10		
Denver	neighbors[3]	0	1	2	4	5	
Kansas City	neighbors[4]	2	3	5	7	8	10
Chicago	neighbors[5]	0	3	4	6	7	
Boston	neighbors[6]	5	7				
New Y ork	neighbors[7]	4	5	6	8		
Atlanta	neighbors[8]	4	7	9	10	11	
Miami	neighbors[9]	8	11				
Dallas	neighbors[10]	2	4	8	11		
Houston	neighbors[11]	8	9	10			

Figure 24.5

Edges in the graph in Figure 24.1 are represented using linked lists.

To represent the adjacency edge lists for the graph in Figure 24.1, you can create an array of lists as follows:
list<Edge> neighbors[12];
neighbors [0] contains all edges adjacent to vertex 0 (i.e., Seattle), neighbors [1] contains all edges adjacent to vertex 1 (i.e., San Francisco), and so on, as shown in Figure 24.6.

Seattle	neighbors[0]	Edge(0, 1)	Edge(0, 2)	Edge(0, 3)			
San Francisco	neighbors[1]	Edge(1, 0)	Edge(1, 2)	Edge(1,3)			
Los Angeles	neighbors[2]	Edge(2, 1)	Edge(2,3)	Edge(2,4)	Edge(2,10)		
Denver	neighbors[3]	Edge(3,0$)$	Edge(3,1$)$	Edge(3,2$)$	Edge(3,4$)$	Edge(3,5)	
Kansas City	neighbors[4]	Edge(4, 2)	Edge(4,3)	Edge(4, 5)	Edge(4, 7)	Edge(4,8$)$	Edge(4, 10)
Chicago	neighbors[5]	Edge(5,0)	Edge (5, 3)	Edge(5,4)	Edge(5, 6)	Edge(5,7$)$	
Boston	neighbors[6]	Edge(6, 5)	Edge (6, 7)				
New Y ork	neighbors[7]	Edge(7,4)	Edge (7, 5)	Edge(7,6)	Edge(7, 8)		
Atlanta	neighbors[8]	Edge(8,4)	Edge (8, 7)	Edge(8,9$)$	Edge(8,10	Edge(8,11)	
Miami	neighbors[9]	Edge $(9,8)$	Edge(9,11)				
Dallas	neighbors[10]	Edge(10, 2)	Edge(10, 4)	Edge(10, 8)	Edge(10, 11)		
Houston	neighbors[11]	Edge(11, 8)	Edge(11, 9)	Edge(11, 10)			

Figure 24.6

Edges in the graph in Figure 24.1 are represented using adjacency edge lists.

NOTE

You can represent a graph using an adjacency matrix or adjacency lists. Which one is better? If the graph is dense (i.e., there are a lot of edges), using an adjacency matrix is preferred. If the graph is very sparse (i.e., very few edges), using adjacency lists is better, because using an adjacency matrix would waste a lot of space.

Both adjacency matrices and adjacency lists may be used in a program to make algorithms more efficient. For example, it takes $O(1)$ constant time to check whether
two vertices are connected using an adjacency matrix and it takes linear time $O(m)$ to print all edges in a graph using adjacency lists, where m is the number of edges.

NOTE

Adjacency vertex is simpler for representing unweighted graphs. However, adjacency edge lists are more flexible for a wide range of graph applications. It is easy to add additional constraints on edges using adjacency edge lists. For this reason, this book will use adjacency edge lists to represent graphs.

For flexibility and simplicity, we will use vectors to represent arrays. Also we will use vectors instead of lists, because our algorithms only requires search for adjacent vertices in the list. Using vectors can simplify coding. Using vectors, the adjacency list in Figure 24.5 can be built as follows:

```
vector<vector<Edge*>> neighbors(12);
neighbors[0].push_back(new Edge(0, 1));
neighbors[0].push_back(new Edge(0, 3));
neighbors[0].push_back(new Edge(0, 5));
neighbors[1].push_back(new Edge(1, 0));
neighbors[1].push_back(new Edge(1, 2));
neighbors[1].push_back(new Edge(1, 3));
```

Note that the pointers of Edge objects are stored in neighbors. This enables neighbors to store any subtypes of Edge for using polymorphism. You will see its benefits in the next chapter when we add a weighted edge to neighbors.

Check point

24.5 How do you represent vertices in a graph? How do you represent edges using an edge array? How do you represent an edge using an edge object? How do you represent edges using an adjacency matrix? How do you represent edges using adjacency lists?
24.6 Represent the following graph using an edge array, a list of edge objects, an adjacency matrix, an adjacency vertex list, and an adjacency edge list, respectively.

24.4 The Graph Class

Key Point: The Graph class defines the common operations for a graph.
We now design a class to model graphs. What are the common operations for a graph? In general, you need to get the number of vertices in a graph, get all vertices in a graph, get the vertex object with a specified index, get the index of the vertex with a specified name, get the neighbors for a vertex, get the adjacency matrix, get the degree for a vertex, perform a depth-first search, and perform a breadth-first search. Depth-first search and breadth-first search will be introduced in the next section. Figure 24.7 illustrates these functions in the UML diagram.

Graph<V>	
\#vertices: vector<V> \#n eighbors: vector<vector<int>>	Vertices in the graph. neighbors [i] stores all vertices adjacent to vertex with index i.
+Graph()	Con structs an empty graph.
+ Graph(vertices: vector $<\mathrm{V}>\&$, edges[][2]: int, numberOfEdges: int)	Constructs a graph with the specified vertices in a vector and edges in a 2-D array.
+Graph(numberOfVertices: int, edges $][2]$: int, numberOfEdges: int)	Constructs a graph whose vertices are $0,1, \ldots, n$-1and edges are specified in a 2-D array.
$\begin{aligned} & + \text { Graph(vertices: vector }<\mathrm{V}>\& \text {, edges: } \\ & \text { vector }<\text { Edge }>\& \text {) } \end{aligned}$	Constructs a graph with the vertices in a vector and edges in a vect or of Edge objects.
$\begin{aligned} & \text { +Graph(numberOfVertices: int, edges: } \\ & \text { vector<Edge>\&) } \end{aligned}$	Constructs a graph whose vertices are $0,1, \ldots, n-1$ and edges in a vector of Edge objects.
+ getSize(): int con	Returns the number of vertices in the graph.
+ get Degree(v: int): int cons	Returns the degree for a specified vertex index.
+ get Vertex(index: int): V cons	Returns the vertex for the specified vertex index.
+ get Index	Returns the index for the specified vertex.
+ get Vertices()	Returns the vertices in the graph in a vector.
+ get Neighbors(v. int): vector<int> const	Returns the neighb ors of vertex with index v.
+ printEdges (): void cons	Prints the edges of the graph to the console.
+ printAdjacencyMatrix(): void const	Prints the adjacencymatrix of the graph to the console.
+clear(): void	Clears the graph.
+ add Vertex(v: V): bool	Returns true if v is added to the graph. Retums false if v is already in the graph.
+ add Edge(u: int, v: int): bool	Adds an edge from u to v to the graph throws invalid_argument if u orv is invalid. Returns true if the edge is added and false if (u, v) is already in the graph.
\#createEdge(e: Edge*): bool	This protected function is called by add Edge.
+dfs(v: int): Tree const	Obtains a depth-first search tree.
+bfs(v: int): Tree const	Obtains a breadth-first search tree.

Figure 24.7

The Graph class defines the common operations for graphs.
vertices, a vector, is defined in the Graph class to represent vertices. The vertices may be of any type: int, string, and so on. So, we use a generic type \mathbf{T} to define it. neighbors, a vector of vectors, is defined to represent edges. With these two data fields, it is sufficient to implement all the functions defined in the Graph class.

A no-arg constructor is provided for convenience. With a no-arg constructor, it is easy to use the class as a base class and as a data type for data fields in a class. You can create a Graph object using one of the four other constructors, whichever is convenient. If you have an edge array, use the first two constructors in the

UML class diagram. If you have a vector of Edge objects, use the last two constructors in the UML class diagram.

The generic type \mathbf{T} indicates the type of vertices-integer, string, and so on. You can create a graph with vertices of any type. If you create a graph without specifying the vertices, the vertices are integers $\mathbf{0}, \mathbf{1}, \ldots$, \mathbf{n} - $\mathbf{1}$, where \mathbf{n} is the number of vertices. Each vertex is associated with an index, which is the same as the index of the vertex in the array for vertices.

Assume the class is available in Graph.h. Listing 24.2 gives a test program that creates a graph for the one in Figure 24.1 and another graph for the one in Figure 24.3a.

Listing 24.2 TestGraph.cpp

```
#include <iostream>
#include <string>
#include <vector>
#include "Graph.h" // Defined in Listing 24.2
#include "Edge.h" // Defined in Listing 24.1
using namespace std;
int main()
{
    // Vertices for graph in Figure 24.1
    string vertices[] = {"Seattle", "San Francisco", "Los Angeles",
        "Denver", "Kansas City", "Chicago", "Boston", "New York",
            "Atlanta", "Miami", "Dallas", "Houston"};
    // Edge array for graph in Figure 24.1
    int edges[][2] = {
        {0, 1}, {0, 3}, {0, 5},
        {1, 0}, {1, 2}, {1, 3},
        {2, 1}, {2, 3}, {2, 4}, {2, 10},
        {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
        {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
        {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
        {6, 5}, {6, 7},
        {7, 4}, {7, 5}, {7, 6}, {7, 8},
        {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
        {9, 8}, {9, 11},
        {10, 2}, {10, 4}, {10, 8}, {10, 11},
        {11, 8}, {11, 9}, {11, 10}
    };
    const int NUMBER_OF_EDGES = 46; // 46 edges in Figure 24.1
    // Create a vector for vertices
```

```
    vector<string> vectorOfVertices(12);
    copy(vertices, vertices + 12, vectorOfVertices.begin());
    Graph<string> graph1(vectorOfVertices, edges, NUMBER_OF_EDGES);
    cout << "The number of vertices in graph1: " << graph1.getSize();
    cout << "\nThe vertex with index 1 is " << graph1.getVertex(1);
    cout << "\nThe index for Miami is " << graph1.getIndex("Miami");
    cout << "\nedges for graph1: " << endl;
    graph1.printEdges();
    cout << "\nAdjacency matrix for graph1: " << endl;
    graph1.printAdjacencyMatrix();
    // vector of Edge objects for graph in Figure 24.3a
    vector<Edge> edgeVector;
    edgeVector.push_back(Edge(0, 2));
    edgeVector.push_back(Edge(1, 2));
    edgeVector.push_back(Edge(2, 4));
    edgeVector.push_back(Edge(3, 4));
    // Create a graph with 5 vertices
    Graph<int> graph2(5, edgeVector);
    cout << "The number of vertices in graph2: " << graph2.getSize();
    cout << "\nedges for graph2: " << endl;
    graph2.printEdges();
    cout << "\nAdjacency matrix for graph2: " << endl;
    graph2.printAdjacencyMatrix();
    return 0;
}
```


Sample output

The number of vertices in graph1: 12
The vertex with index 1 is San Francisco
The index for Miami is 9
edges for graph1:
Vertex Seattle(0): (Seattle, San Francisco)
(Seattle, Denver) (Seattle, Chicago)
Vertex San Francisco(1): (San Francisco, Seattle)
(San Francisco, Los Angeles) (San Francisco, Denver)
Vertex Los Angeles(2): (Los Angeles, San Francisco)
(Los Angeles, Denver) (Los Angeles, Kansas City)
(Los Angeles, Dallas)
Vertex Denver(3): (Denver, Seattle) (Denver, San Francisco)
(Denver, Los Angeles) (Denver, Kansas City)
(Denver, Chicago)
Vertex Kansas City(4): (Kansas City, Los Angeles)
(Kansas City, Denver) (Kansas City, Chicago)
(Kansas City, New York) (Kansas City, Atlanta)
(Kansas City, Dallas)
Vertex Chicago(5): (Chicago, Seattle) (Chicago, Denver)
(Chicago, Kansas City) (Chicago, Boston)
(Chicago, New York)
Vertex Boston(6): (Boston, Chicago) (Boston, New York)
Vertex New York(7): (New York, Kansas City)
(New York, Chicago) (New York, Boston) (New York, Atlanta)
Vertex Atlanta(8): (Atlanta, Kansas City)
(Atlanta, New York) (Atlanta, Miami) (Atlanta, Dallas)

```
    (Atlanta, Houston)
Vertex Miami(9): (Miami, Atlanta) (Miami, Houston)
Vertex Dallas(10): (Dallas, Los Angeles)
    (Dallas, Kansas City) (Dallas, Atlanta)
    (Dallas, Houston)
Vertex Houston(11): (Houston, Atlanta) (Houston, Miami)
    (Houston, Dallas)
Adjacency matrix for graph1:
0 1 0 1 0 1 0 0 0 0 0 0
101 1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 1 0
1 1 1 0 1 1 0 0 0 0 0 0
0 0 1 1 0 1 0 1 1 0 1 0
100 1 1 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 1 1 0 1 0 0 0
0 0 0 0 1 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0 1 0 0 1
0 0 1 0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 1 1 0
The number of vertices in graph2: 5
edges for graph2:
Vertex 0(0): (0, 2)
Vertex 1(1): (1, 2)
Vertex 2(2): (2, 4)
Vertex 3(3): (3, 4)
Vertex 4(4):
Adjacency matrix for graph2:
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0
```

The program creates graph1 for the graph in Figure 24.1 in lines 11-36. The vertices for graph1 are defined in lines $11-13$. The edges for graph1 are defined in lines $16-29$. The edges are represented using a two-dimensional array. For each row \mathbf{i} in the array, edges [i] [0] and edges [i] [1] indicate that there is an edge from vertex edges [i] [0] to vertex edges [i] [1]. For example, the first row $\{\mathbf{0}, \mathbf{1}\}$ represents the edge from vertex 0 (edges [0] [0]) to vertex $\mathbf{1}$ (edges [0] [1]). The row $\{\mathbf{0}, \mathbf{5}\}$ represents the edge from vertex 0 (edges [2] [0]) to vertex 5 (edges [2] [1]). The graph is created in line 36. Line 42 invokes the printEdges () function on graph1 to display all edges in graph1. Line 45 invokes the printAdjacencyMatrix () function on graph1 to display the adjacency matrix for graph1.

The program creates graph2 for the graph in Figure 24.3a in lines 48-54. The edges for graph2 are defined in lines 48-52. graph2 is created using a vector of Edge objects in line 54. Line 58 invokes the printEdges() function on graph2 to display all edges in graph2. Line 61 invokes the printAdjacencyMatrix() function on graph2 to display the adjacency matrix for graph1.

Note that graph1 contains the vertices of strings and graph2 contains the vertices with integers $\mathbf{0}, \mathbf{1}, \ldots$, $\mathbf{n - 1}$, where \mathbf{n} is the number of vertices. In $\mathbf{g r a p h} \mathbf{1}$, the vertices are associated with indices $\mathbf{0}, \mathbf{1}, \ldots, \mathbf{n - 1}$. The index is the location of the vertex in vertices. For example, the index of vertex Miami is $\mathbf{9}$.

Now we turn our attention to implementing the Graph class, as shown in Listing 24.3.

Listing 24.3 Graph.h

```
#ifndef GRAPH_H
#define GRAPH_H
#include "Edge.h" // Defined in Listing 24.1
#include "Tree.h" // Defined in Listing 24.4
#include <vector>
#include <queue> // For implementing BFS
#include <stdexcept>
#include <sstream> // For converting a number to a string
using namespace std;
template<typename V>
class Graph
{
public:
    // Construct an empty graph
    Graph();
    // Construct a graph from vertices in a vector and
    // edges in 2-D array
    Graph(vector<V>& vertices, int edges[][2], int numberOfEdges);
    // Construct a graph with vertices 0, 1, ..., n-1 and
    // edges in 2-D array
    Graph(int numberOfVertices, int edges[][2], int numberOfEdges);
    // Construct a graph from vertices and edges objects
    Graph(vector<V>& vertices, vector<Edge>& edges);
    // Construct a graph with vertices 0, 1, ..., n-1 and
    // edges in a vector
    Graph(int numberOfVertices, vector<Edge>& edges);
```

```
    // Return the number of vertices in the graph
    int getSize() const;
    // Return the degree for a specified vertex
    int getDegree(int v) const;
    // Return the vertex for the specified index
    V getVertex(int index) const;
    // Return the index for the specified vertex
    int getIndex(V v) const;
    // Return the vertices in the graph
    vector<V> getVertices() const;
    // Return the neighbors of vertex v
    vector<int> getNeighbors(int v) const;
    // Print the edges
    void printEdges() const;
    // Print the adjacency matrix
    void printAdjacencyMatrix() const;
    // Clear the graph
    void clear();
    // Adds a vertex to the graph
    virtual bool addVertex(V v);
    // Adds an edge from u to v to the graph
    bool addEdge(int u, int v);
    // Obtain a depth-first search tree
    // To be discussed in Section 24.6
    Tree dfs(int v) const;
    // Starting bfs search from vertex v
    // To be discussed in Section 24.7
    Tree bfs(int v) const;
protected:
    vector<V> vertices; // Store vertices
    vector<vector<Edge*>> neighbors; // Adjacency edge lists
    bool createEdge(Edge* e); // Add an edge
private:
    // Create adjacency lists for each vertex from an edge array
    void createAdjacencyLists(int numberOfVertices, int edges[][2],
        int numberOfEdges);
    // Create adjacency lists for each vertex from an Edge vector
    void createAdjacencyLists(int numberOfVertices,
        vector<Edge>& edges);
    // Recursive function for DFS search
    void dfs(int v, vector<int>& parent,
        vector<int>& searchOrders, vector<bool>& isVisited) const;
};
```

94

```
template<typename V>
Graph<V>::Graph()
{
template<typename V>
Graph<V>::Graph(vector<V>& vertices, int edges[][2],
    int numberOfEdges)
{
    for (unsigned i = 0; i < vertices.size(); i++)
        addVertex(vertices[i]);
    createAdjacencyLists(vertices.size(), edges, numberOfEdges);
}
template<typename V>
Graph<V>::Graph(int numberOfVertices, int edges[][2],
    int numberOfEdges)
{
    for (int i = 0; i < numberOfVertices; i++)
        addVertex(i); // vertices is {0, 1, 2, ..., n-1}
    createAdjacencyLists(numberOfVertices, edges, numberOfEdges);
}
template<typename V>
Graph<V>::Graph(vector<V>& vertices, vector<Edge>& edges)
{
    for (unsigned i = 0; i < vertices.size(); i++)
        addVertex(vertices[i]);
    createAdjacencyLists(vertices.size(), edges);
}
template<typename V>
Graph<V>::Graph(int numberOfVertices, vector<Edge>& edges)
{
    for (int i = 0; i < numberOfVertices; i++)
        addVertex(i); // vertices is {0, 1, 2, ..., n-1}
    createAdjacencyLists(numberOfVertices, edges);
}
template<typename V>
void Graph<V>::createAdjacencyLists(int numberOfVertices,
    int edges[][2], int numberOfEdges)
{
    for (int i = 0; i < numberOfEdges; i++)
    {
            int u = edges[i][0];
            int v = edges[i][1];
            addEdge(u, v);
    }
}
template<typename V>
void Graph<V>::createAdjacencyLists(int numberOfVertices,
    vector<Edge>& edges)
{
```

```
    for (unsigned i = 0; i < edges.size(); i++)
    {
        int u = edges[i].u;
        int v = edges[i].v;
        addEdge(u, v);
    }
}
template<typename V>
int Graph<V>::getSize() const
{
    return vertices.size();
}
template<typename V>
int Graph<V>::getDegree(int v) const
{
    return neighbors[v].size();
}
template<typename V>
V Graph<V>::getVertex(int index) const
{
    return vertices[index];
}
template<typename V>
int Graph<V>::getIndex(V v) const
{
    for (unsigned i = 0; i < vertices.size(); i++)
    {
        if (vertices[i] == v)
            return i;
    }
    return -1; // If vertex is not in the graph
}
template<typename V>
vector<V> Graph<V>::getVertices() const
{
    return vertices;
}
template<typename V>
vector<int> Graph<V>::getNeighbors(int u) const
{
    vector<int> result;
    for (Edge* e: neighbors[u])
        result.push_back(e->v);
    return result;
}
template<typename V>
void Graph<V>::printEdges() const
{
    for (unsigned u = 0; u < neighbors.size(); u++)
    {
        cout << "Vertex " << getVertex(u) << "(" << u << "): ";
```

```
2 1 3
214
215
") ";
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
```

 for (Edge* e: neighbors[u])
    ```
        for (Edge* e: neighbors[u])
        {
        {
            cout << "(" << getVertex(e->u) << ", " << getVertex(e->v) <<
            cout << "(" << getVertex(e->u) << ", " << getVertex(e->v) <<
        }
        }
        cout << endl;
        cout << endl;
    }
    }
}
}
template<typename V>
template<typename V>
void Graph<V>::printAdjacencyMatrix() const
void Graph<V>::printAdjacencyMatrix() const
{
{
    // Use vector for 2-D array
    // Use vector for 2-D array
    vector<vector<int>> adjacencyMatrix(getSize());
    vector<vector<int>> adjacencyMatrix(getSize());
    // Initialize 2-D array for adjacency matrix
    // Initialize 2-D array for adjacency matrix
    for (int i = 0; i < getSize(); i++)
    for (int i = 0; i < getSize(); i++)
    {
    {
        adjacencyMatrix[i] = vector<int>(getSize());
        adjacencyMatrix[i] = vector<int>(getSize());
    }
    }
    for (unsigned i = 0; i < neighbors.size(); i++)
    for (unsigned i = 0; i < neighbors.size(); i++)
    {
    {
        for (Edge* e: neighbors[i])
        for (Edge* e: neighbors[i])
        {
        {
            adjacencyMatrix[i][e->v] = 1;
            adjacencyMatrix[i][e->v] = 1;
        }
        }
    }
    }
    for (unsigned i = 0; i < adjacencyMatrix.size(); i++)
    for (unsigned i = 0; i < adjacencyMatrix.size(); i++)
    {
    {
        for (unsigned j = 0; j < adjacencyMatrix[i].size(); j++)
        for (unsigned j = 0; j < adjacencyMatrix[i].size(); j++)
        {
        {
            cout << adjacencyMatrix[i][j] << " ";
            cout << adjacencyMatrix[i][j] << " ";
        }
        }
        cout << endl;
        cout << endl;
    }
    }
}
}
template<typename V>
template<typename V>
void Graph<V>::clear()
void Graph<V>::clear()
{
{
    vertices.clear();
    vertices.clear();
    for (int i = 0; i < getSize(); i++)
    for (int i = 0; i < getSize(); i++)
        for (Edge* e: neighbors[i])
        for (Edge* e: neighbors[i])
            delete e;
            delete e;
    neighbors.clear();
    neighbors.clear();
}
}
template<typename V>
template<typename V>
bool Graph<V>::addVertex(V v)
bool Graph<V>::addVertex(V v)
{
{
    if (find(vertices.begin(), vertices.end(), v) == vertices.end())
    if (find(vertices.begin(), vertices.end(), v) == vertices.end())
    {
    {
        vertices.push_back(v);
        vertices.push_back(v);
        neighbors.push_back(vector<Edge*>(0));
        neighbors.push_back(vector<Edge*>(0));
        return true;
        return true;
    }
    }
    else
```

 else
    ```
```

 {
 return false;
 }
 }
template<typename V>
bool Graph<V>::createEdge(Edge* e)
{
if (e->u < 0 || e->u > getSize() - 1)
{
stringstream ss;
ss << e->u;
throw invalid_argument("No such edge: " + ss.str());
}
if (e->v < 0 || e->v > getSize() - 1)
{
stringstream ss;
ss << e->v;
throw invalid_argument("No such edge: " + ss.str());
}
vector<int> listOfNeighbors = getNeighbors(e->u);
if (find(listOfNeighbors.begin(), listOfNeighbors.end(), e->v)
== listOfNeighbors.end())
{
neighbors[e->u].push_back(e);
return true;
}
else
{
return false;
}
}
template<typename V>
bool Graph<V>::addEdge(int u, int v)
{
return createEdge(new Edge(u, v));
}
template<typename V>
Tree Graph<V>::dfs(int u) const
{
vector<int> searchOrders;
vector<int> parent(vertices.size());
for (unsigned i = 0; i < vertices.size(); i++)
parent[i] = -1; // Initialize parent[i] to -1
// Mark visited vertices
vector<bool> isVisited(vertices.size());
for (unsigned i = 0; i < vertices.size(); i++)
{
isVisited[i] = false;
}
// Recursively search
dfs(u, parent, searchOrders, isVisited);
// Return a search tree

```
```

 return Tree(u, parent, searchOrders);
 }
template<typename V>
void Graph<V>::dfs(int u, vector<int>\& parent,
vector<int>\& searchOrders, vector<bool>\& isVisited) const
{
// Store the visited vertex
searchOrders.push_back(u);
isVisited[u] = true; // Vertex v visited
for (Edge* e: neighbors[u])
{
if (!isVisited[e->v])
{
parent[e->v] = u; // The parent of vertex i is v
dfs(e->v, parent, searchOrders, isVisited); // Recursive
}
}
}
template<typename V>
Tree Graph<V>::bfs(int v) const
{
vector<int> searchOrders;
vector<int> parent(vertices.size());
for (int i = 0; i < getSize(); i++)
parent[i] = -1; // Initialize parent[i] to -1
queue<int> queue; // Stores vertices to be visited
vector<bool> isVisited(getSize());
queue.push(v); // Enqueue v
isVisited[v] = true; // Mark it visited
while (!queue.empty())
{
int u = queue.front(); // Get from the front of the queue
queue.pop(); // remove the front element
searchOrders.push_back(u); // u searched
for (Edge* e: neighbors[u])
{
int w = e->v;
if (!isVisited[w])
{
queue.push(w); // Enqueue w
parent[w] = u; // The parent of w is u
isVisited[w] = true; // Mark it visited
}
}
}
return Tree(v, parent, searchOrders);
}
\#endif

```

To construct a graph, you need to create vertices and edges. The vertices are stored in a vector<T> and the edges in a vector<vector<Edge>> (line 78), which is the adjacency edge list described in
§24.3.4. The constructors (lines 95-136) create vertices and edges. The edges may be created from an edge array (discussed in §24.3.2) or a vector of Edge objects (discussed in §24.3.3). The private function createAdjacencyList (lines 138-148) is used to create the adjacency list from an edge array and the overloaded createAdjacencyList function (lines 150-160) is used to create the adjacency list from a vector of Edge objects. The Edge class is defined in Listing 24.1, which simply defines two vertices having an edge.
vertices and neighbors are declared protected so that they can be accessed from derived classes of Graph for future extension.

The function getSize returns the number of the vertices in the graph (lines 162-166). The function getDegree(int v) returns the degree of a vertex with index \(\mathbf{v}\) (lines 168-172). The function getVertex (int index) returns the vertex with the specified index (lines 174-178). The function getIndex ( \(\mathbf{T} \mathbf{v}\) ) returns the index of the specified vertex (lines 180-190). The function getVertices() returns the vector for the vertex (lines 192-196). The function getNeighbors(u) returns a list of vertices adjacent to \(u\) (lines 198-205). The function printEdges ( ) (lines 207-219) displays all vertices and edges adjacent to each vertex. The function printAdjacencyMatrix () (lines 221-250) displays the adjacency matrix.

The function clear removes all edges and vertices from the graph (lines 252-260). The function addVertex ( \(\mathbf{v}\) ) adds a new vertex to the graph and returns true if the vertex is not in the graph (lines 262-275). If the vertex is already in the graph, the function returns false (line 273).

The function createEdge adds a new edge to the graph (lines 277-305). It throws an invalid_argument exception if the edges are invalid (lines 280-292). It returns false if the edge is already in the graph (line 303). Note that this function is a protected function and may be used by a derived class to add a different type of edge to the graph. In this class, it is called by the addEdge ( \(\mathbf{u}, \mathbf{v}\) ) function to add an unweighted edge to the graph (line 310).

The code in lines 313-384 gives the functions for finding a depth-first search tree and a breadth-first search tree, which will be introduced in subsequent sections.

\section*{Check point}
24.7 Describe the relationships among Graph, Edge, and Tree.
24.8 For the code in Listing 24.1, TestGraph.cpp, what is graph1.getIndex("Seattle")? What is graph1.getDegree(5)? What is graph1.getVertex(4)?

\subsection*{24.5 Graph Traversals}

Key Point: Depth-first and breadth-first are two common ways to traverse a graph.
Graph traversal is the process of visiting each vertex in the graph exactly once. There are two popular ways to traverse a graph: depth-first traversal (or depth-first search) and breadth-first traversal (or breadth-first search). Both traversals result in a spanning tree, which can be modeled using a class, as shown in Figure 24.8. The Tree class describes the parent-child relationship of the nodes in the tree, as shown in Listing 24.4.
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Tree } \\
\hline -root: int \\
-parent: vector<int> \\
-searchOrders: vector<int> \\
\hline +Tree() \\
+Tree(root: int, parent: vector<int>\&, \\
searchOrders: vector<int>\&) \\
+Tree(root: int, parent: vector<int>\&) \\
+getRoot(): int const \\
+getSearchOrders(): vector<int> const \\
+getParent(v: int): int const \\
+getNumberOfVerticesFound(): int const \\
+getPath(v: int): vector<int> const \\
+printTree(0: void const
\end{tabular}

The root of the tree.
parent[i] stores the parent of vertex \(i\) in the tree.
The orders for traversing the vertices.
Constructs an emtpy tree.
Constructs a tree with the specified root, parent, and searchOrders.
Constructs a tree with the specified root, parent.
Returns the root of the tree.
Returns the order of vertices searched.
Returns the parent of vertex v.
Returns the number of vertices searched.
Returns a path of all vertices leading to the root from v .
The return values are in a vector.
Displays tree with the root and all edges.

\section*{Figure 24.8}

The Tree class describes parent-child relationship of the nodes in a tree.

\section*{Listing 24.4 Tree.h}
```

\#ifndef TREE_H
\#define TREE_H
\#include <vector>
using namespace std;
class Tree
{
public:

```
    // Construct an empty tree
    Tree()
    \{
    // Construct a tree with root, parent, and searchOrder
    Tree(int root, vector<int>\& parent, vector<int>\& searchOrders)
    \{
        this->root = root;
        this->parent = parent;
        this->searchOrders = searchOrders;
    \}
    // Return the root of the tree
    int getRoot() const
    \{
        return root;
    \}
    // Return the parent of vertex v
    int getParent(int \(v\) ) const
    \{
        return parent[v];
    \}
    // Return search order
    vector<int> getSearchOrders() const
    \{
        return searchOrders;
    \}
    // Return number of vertices found
    int getNumberOfVerticesFound() const
    \{
        return searchOrders.size();
    \}
    // Return the path of vertices from \(v\) to the root in a vector
    vector<int> getPath(int v) const
    \{
        vector<int> path;
        do
        \{
            path.push_back(v);
            v = parent[v];
        \}
        while (v != -1);

The Tree class has two constructors. The no-arg constructor constructs an empty tree. The other constructor constructs a tree with a search order (lines 16-21).

The Tree class defines seven functions. The getRoot ( ) function returns the root of the tree (lines 2427). You can invoke getParent ( \(\mathbf{v}\) ) to find the parent of vertex \(\mathbf{v}\) in the search (lines \(30-33\) ). You can get the order of the vertices searched by invoking the getSearchOrders() function (lines 36-39). Invoking getNumberOfVerticesFound ( ) returns the number of vertices searched (lines 42-45). The getPath ( \(\mathbf{v}\) ) function returns a path from the \(\mathbf{v}\) to root (lines 48-60). You can display all edges in the tree using the printTree( ) function (lines 63-75).

Sections 24.6 and 24.7 will introduce depth-first search and breadth-first search, respectively. Both searches will result in an instance of the Tree class.

\section*{Check point}
24.9 What function do you use to find the parent of a vertex in the tree?

\subsection*{24.6 Depth-First Search}

Key Point: The depth-first search of a graph starts from a vertex in the graph and visits all vertices in the graph as far as possible before backtracking.

The depth-first search of a graph is like the depth-first search of a tree discussed in §21.2.5, "Tree Traversal." In the case of a tree, the search starts from the root. In a graph, the search can start from any vertex.

A depth-first search of a tree first visits the root, then recursively visits the subtrees of the root. Similarly, the depth-first search of a graph first visits a vertex, then recursively visits all vertices adjacent to that vertex. The difference is that the graph may contain cycles, which may lead to an infinite recursion. To avoid this problem, you need to track the vertices that have already been visited and avoid visiting them again.

The search is called depth-first, because it searches "deeper" in the graph as much as possible. The search starts from some vertex \(v\). After visiting \(v\), visit an unvisited neighbor of \(v\). If \(v\) has no unvisited neighbor, backtrack to the vertex from which we reached \(v\).

\subsection*{24.6.1 Depth-First Search Algorithm}

The algorithm for the depth-first search can be described in Listing 24.5.

\section*{Listing 24.5 Depth-first Search Algorithm}

Input: \(G=(V, E)\) and \(a\) starting vertex \(v\)
Output: a DFS tree rooted at v

\section*{1 Tree dfs(vertex v)}

2 \{
visit v;
for each neighbor \(w\) of \(v\) if (w has not been visited)
\{
parent \([\mathrm{w}]=\mathrm{v}\); dfs(w);
\}
\}

You may use a vector named isVisited to denote whether a vertex has been visited. Initially, isVisited[i] is false for each vertex \(i\). Once a vertex, say \(v\), is visited, isVisited [ \(\mathbf{v}\) ] is set to true.

Consider the graph in Figure 24.9a. Suppose you start the depth-first search from vertex 0. First visit 0, then any of its neighbors, say 1 . Now 1 is visited, as shown in Figure 24.9b. Vertex 1 has three neighbors: 0,2 , and 4 . Since 0 has already been visited, you will visit either 2 or 4 . Let us pick 2 . Now 2 is visited, as shown in Figure 24.9c. 2 has three neighbors: 0, 1, and 3. Since 0 and 1 have already been visited, pick 3. 3 is now visited, as shown in Figure 24.9d. At this point, the vertices have been visited in this order:
\(0,1,2,3\)

Since all the neighbors of 3 have been visited, backtrack to 2 . Since all the vertices of 2 have been visited, backtrack to 1.4 is adjacent to 1, but 4 has not been visited. So, visit 4, as shown in Figure 24.9 e. Since all the neighbors of 4 have been visited, backtrack to 1 . Since all the neighbors of 1 have been visited, backtrack to 0 . Since all the neighbors of 0 have been visited, the search ends.



Figure 24.9
Depth-first search visits a node and its neighbors recursively.

Since each edge and each vertex is visited only once, the time complexity of the dfs function is \(\mathbf{O}(|\mathbf{E}|+\) \(\mathbf{| V |}\) ), where \(|\mathbf{E}|\) denotes the number of edges and \(|\mathbf{V}|\) the number of vertices.

\subsection*{24.6.2 Implementation of Depth-First Search}

The algorithm is described in Listing 24.5, using recursion. It is natural to use recursion to implement it. Alternatively, you can use a stack (see Programming Exercise 24.4).

The dfs(int v) function is implemented in lines 245-265 in Listing 24.3. It returns an instance of the Tree class with vertex \(\mathbf{v}\) as the root. The function stores the vertices searched in a list searchOrders (line 248), the parent of each vertex in an array parent (line 249), and uses the isVisited array to indicate whether a vertex has been visited (line 254). It invokes the helper function dfs ( v, parent, searchOrders, isVisited) to perform a depth-first search (line 261).

In the recursive helper function, the search starts from vertex \(\mathbf{V} . \mathbf{v}\) is added to searchOrders (line 272) and is marked visited (line 273). For each unvisited neighbor of \(\mathbf{v}\), the function is recursively invoked to perform a depth-first search. When a vertex \(\mathbf{i}\) is visited, the parent of \(\mathbf{i}\) is stored in parent [i] (line
280). The function returns when all vertices are visited for a connected graph, or in a connected component.

Listing 24.6 gives a test program that displays a DFS for the graph in Figure 24.1, starting from Chicago.

\section*{Listing 24.6 TestDFS.cpp}
```

\#include <iostream>
\#include <string>
\#include <vector>
\#include "Graph.h" // Defined in Listing 24.2
\#include "Edge.h" // Defined in Listing 24.1
\#include "Tree.h" // Defined in Listing 24.4
using namespace std;
int main()
{
// Vertices for graph in Figure 24.1
string vertices[] = {"Seattle", "San Francisco", "Los Angeles",
"Denver", "Kansas City", "Chicago", "Boston", "New York",
"Atlanta", "Miami", "Dallas", "Houston"};
// Edge array for graph in Figure 24.1
int edges[][2] = {
{0, 1}, {0, 3}, {0, 5},
{1, 0}, {1, 2}, {1, 3},
{2, 1}, {2, 3}, {2, 4}, {2, 10},
{3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
{4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
{5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
{6, 5}, {6, 7},
{7, 4}, {7, 5}, {7, 6}, {7, 8},
{8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
{9, 8}, {9, 11},
{10, 2}, {10, 4}, {10, 8}, {10, 11},
{11, 8}, {11, 9}, {11, 10}
};
const int NUMBER_OF_EDGES = 46; // 46 edges in Figure 24.1
// Create a vector for vertices
vector<string> vectorOfVertices(12);
copy(vertices, vertices + 12, vectorOfVertices.begin());
Graph<string> graph(vectorOfVertices, edges, NUMBER_OF_EDGES);
Tree dfs = graph.dfs(5); // Vertex 5 is Chicago
vector<int> searchOrders = dfs.getSearchOrders();
cout << dfs.getNumberOfVerticesFound() <<
" vertices are searched in this DFS order:" << endl;
for (unsigned i = 0; i < searchOrders.size(); i++)
cout << graph.getVertex(searchOrders[i]) << " ";
cout << endl << endl;

```
```

 for (unsigned i = 0; i < searchOrders.size(); i++)
 if (dfs.getParent(i) != -1)
 cout << "parent of " << graph.getVertex(i) <<
 " is " << graph.getVertex(dfs.getParent(i)) << endl;
 return 0;
 }

```

\section*{Sample output}
```

1 2 ~ v e r t i c e s ~ a r e ~ s e a r c h e d ~ i n ~ t h i s ~ D F S ~ o r d e r : ~
Chicago Seattle San Francisco Los Angeles Denver Kansas City
New York Boston Atlanta Miami Houston Dallas

```
    parent of Seattle is Chicago
    parent of San Francisco is Seattle
    parent of Los Angeles is San Francisco
    parent of Denver is Los Angeles
    parent of Kansas City is Denver
    parent of Boston is New York
    parent of New York is Kansas City
    parent of Atlanta is New York
    parent of Miami is Atlanta
    parent of Dallas is Houston
    parent of Houston is Miami

The program creates a graph for Figure 24.1 in line 37 and obtains a DFS tree starting from vertex
Chicago in line 38. The search order is obtained in line 40. The graphical illustration of the DFS starting from Chicago is shown in Figure 24.10.


Figure 24.10

DFS search starts from Chicago.

Note it is not necessary to include Tree.h and Edge.h, because these two header files are already included in Graph.h.

\subsection*{24.6.3 Applications of the DFS}

The depth-first search can be used to solve many problems, such as the following:
- Detecting whether a graph is connected. Search the graph starting from any vertex. If the number of vertices searched is the same as the number of vertices in the graph, the graph is connected. Otherwise, the graph is not connected.
- Detecting whether there is a path between two vertices.
- Finding a path between two vertices.
- Finding all connected components. A connected component is a maximal connected subgraph in which every pair of vertices are connected by a path.
- Detecting whether there is a cycle in the graph.
- Finding a cycle in the graph.

The first four problems can be easily solved using the dfs function in Listing 24.3. To detect or find a cycle in the graph, you have to slightly modify the dfs function.

\section*{Check point}
24.10 What is depth-first search?
24.11 Draw a DFS tree for the graph in Figure 24.3b starting from node A.
24.12 Draw a DFS tree for the graph in Figure 24.1 starting from vertex Atlanta.
24.13 What is the return type from invoking dfs (v)?
24.14 The depth-first search algorithm described in Listing 24.8 uses recursion. Alternatively, you can use a stack to implement it, as shown below. Point out the error in this algorithm and give a correct algorithm.
```

// Wrong version

```
```

Tree dfs(vertex v)
{
push v into the stack;
mark v visited;
while (the stack is not empty)
{
pop a vertex, say u, from the stack
visit u;
for each neighbor w of u
if (w has not been visited)
push w into the stack;
}
}

```

\subsection*{24.7 Breadth-First Search}

Key Point: The breadth-first search of a graph visits the vertices level by level. The first level consists of the starting vertex. Each next level consists of the vertices adjacent to the vertices in the preceding level.

The breadth-first traversal of a graph is like the breadth-first traversal of a tree discussed in §21.2.5, "Tree Traversal." With breadth-first traversal of a tree, the nodes are visited level by level. First the root is visited, then all the children of the root, then the grandchildren of the root from left to right, and so on. Similarly, the breadth-first search of a graph first visits a vertex, then all its adjacent vertices, then all the vertices adjacent to those vertices, and so on. To ensure that each vertex is visited only once, skip a vertex if it has already been visited.

\subsection*{24.7.1 Breadth-First Search Algorithm}

The algorithm for the breadth-first search starting from vertex \(v\) in a graph is described in Listing 24.7.

\section*{Listing 24.7 Breadth-first Search Algorithm}

Input: \(G=(V, E)\) and \(a\) starting vertex \(v\)
```

Output: a BFS tree rooted at v

```
1 Tree bfs(vertex v)
2 \{
    create an empty queue for storing vertices to be visited;
    add \(v\) into the queue;
    mark v visited;
    while the queue is not empty
    \{
        dequeue a vertex, say \(u\), from the queue
        visit u;
        for each neighbor \(w\) of \(u\)
        if \(w\) has not been visited
        \{
            add \(w\) into the queue;
                mark w visited;
                parent[w] = v;
            \}
    \}
\}

Consider the graph in Figure 24.11a. Suppose you start the breadth-first search from vertex 0. First visit 0, then all its visited neighbors, 1,2 , and 3, as shown in 24.11b. Vertex 1 has three neighbors, 0,2 , and 4.

Since 0 and 2 have already been visited, you will now visit just 4, as shown in Figure 24.11c. Vertex 2 has three neighbors, 0,1 , and 3, which have all been visited. Vertex 3 has three neighbors, 0 , 2, and 4, which have all been visited. Vertex 4 has two neighbors, 1 and 3, which have all been visited. So, the search ends.


\section*{Figure 24.11}

Breadth-first search visits a node, then its neighbors, and then its neighbors' neighbors, and so on.

Since each edge and vertex is visited only once, the time complexity of the bfs function is \(\mathbf{0}(|\mathbf{E}|+\) \(|\mathbf{V}|\) ), where \(|\mathbf{E}|\) denotes the number of edges and \(|\mathbf{V}|\) the number of vertices.

The bfs(int v) function is defined in Listing 24.3 (lines 286-317). It returns an instance of the Tree class with vertex \(\mathbf{V}\) as the root. The function stores the vertices searched in a list searchOrders (line 289), the parent of each vertex in an array parent (line 290), stores the vertices to be visited in a queue (line 294), and uses the isVisited array to indicate whether a vertex has been visited (line 295). The search starts from vertex \(\mathbf{V} . \mathbf{V}\) is added to the queue (line 296) and is marked visited (line 297). The function now examines each vertex \(\mathbf{u}\) in the queue (line 299) and adds it to searchOrders (line 303). The function adds each unvisited neighbor \(\mathbf{w}\) of \(\mathbf{u}\) to the queue (line 309), set its parent to \(\mathbf{u}\) (line 310), and mark it visited (line 311).

Listing 24.8 gives a test program that displays a BFS for the graph in Figure 24.1, starting from Chicago.

\section*{Listing 24.8 TestBFS.cpp}
```

\#include <iostream>
\#include <string>
\#include <vector>
\#include "Graph.h" // Defined in Listing 24.2
using namespace std;
int main()
{
// Vertices for graph in Figure 24.1
string vertices[] = {"Seattle", "San Francisco", "Los Angeles",
"Denver", "Kansas City", "Chicago", "Boston", "New York",
"Atlanta", "Miami", "Dallas", "Houston"};
// Edge array for graph in Figure 24.1
int edges[][2] = {
{0, 1}, {0, 3}, {0, 5},
{1, 0}, {1, 2}, {1, 3},
{2, 1}, {2, 3}, {2, 4}, {2, 10},
{3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
{4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
{5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
{6, 5}, {6, 7},
{7, 4}, {7, 5}, {7, 6}, {7, 8},
{8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
{9, 8}, {9, 11},
{10, 2}, {10, 4}, {10, 8}, {10, 11},
{11, 8}, {11, 9}, {11, 10}
};
const int NUMBER_OF_EDGES = 46; // 46 edges in Figure 24.1

```
```

 // Create a vector for vertices
 vector<string> vectorOfVertices(12);
 copy(vertices, vertices + 12, vectorOfVertices.begin());
 Graph<string> graph(vectorOfVertices, edges, NUMBER_OF_EDGES);
 Tree dfs = graph.bfs(5); // Vertex 5 is Chicago
 vector<int> searchOrders = dfs.getSearchOrders();
 cout << dfs.getNumberOfVerticesFound() <<
 " vertices are searched in this BFS order:" << endl;
 for (unsigned i = 0; i < searchOrders.size(); i++)
 cout << graph.getVertex(searchOrders[i]) << " ";
 cout << endl << endl;
 for (unsigned i = 0; i < searchOrders.size(); i++)
 if (dfs.getParent(i) != -1)
 cout << "parent of " << graph.getVertex(i) <<
 " is " << graph.getVertex(dfs.getParent(i)) << endl;
 return 0;
 }

```

\section*{Sample output}
```

12 vertices are searched in this BFS order:
Chicago Seattle Denver Kansas City Boston New York
San Francisco Los Angeles Atlanta Dallas Miami Houston
parent of Seattle is Chicago
parent of San Francisco is Seattle
parent of Los Angeles is Denver
parent of Denver is Chicago
parent of Kansas City is Chicago
parent of Boston is Chicago
parent of New York is Chicago
parent of Atlanta is Kansas City
parent of Miami is Atlanta
parent of Dallas is Kansas City
parent of Houston is Atlanta

```

The program creates a graph for Figure 24.1 in line 35 and obtains a DFS tree starting from vertex Chicago
in line 36. The search order is obtained in line 38. The graphical illustration of the BFS starting from
Chicago is shown in Figure 24.12.


Figure 24.12
BFS search starts from Chicago.

\subsection*{24.7.3 Applications of the BFS}

Many of the problems solved by the DFS can also be solved using the breadth-first search. Specifically, the BFS can be used to solve the following problems:
- Detecting whether a graph is connected. A graph is connected if there is a path between any two vertices in the graph.
- Detecting whether there is a path between two vertices.
- Finding a shortest path between two vertices. You can prove that the path between the root and any node in the BFS tree is the shortest path between the root and the node (see Review Question 24.10).
- Finding all connected components. A connected component is a maximal connected subgraph in which every pair of vertices are connected by a path.
- Detecting whether there is a cycle in the graph.
- Finding a cycle in the graph.
- Testing whether a graph is bipartite. A graph is bipartite if its vertices can be divided into two disjoint sets such that no edges exist between vertices in the same set.

\section*{Check point}
24.15 What is the return type from invoking bfs(v)?
24.16 What is breadth-first search?
24.17 Draw a BFS tree for the graph in Figure 24.3b starting from node A.
24.18 Draw a BFS tree for the graph in Figure 24.1 starting from vertex Atlanta.
24.19 Prove that the path between the root and any node in the BFS tree is the shortest path between the root and the node.

\subsection*{24.8 Case Study: The Nine Tail Problem}

Key Point: The nine tails problem can be reduced to the shortest path problem.
The DFS and BFS algorithms have many applications. This section applies the BFS to solve the nine tail problem.

The problem is stated as follows. Nine coins are placed in a three-by-three matrix with some face up and some face down. A legal move is to take any coin that is face up and reverse it, together with the coins adjacent to it (this does not include coins that are diagonally adjacent). Your task is to find the minimum number of moves that lead to all coins being face down. For example, you start with the nine coins as shown in Figure 24.13a. After flipping the second coin in the last row, the nine coins are now as shown in Figure 24.13b. After flipping the second coin in the first row, the nine coins are all face down, as shown in 24.13c.
\begin{tabular}{|c|l|l|}
\hline\(H\) & \(H\) & \(H\) \\
\hline\(T\) & \(T\) & \(T\) \\
\hline\(H\) & \(H\) & \(H\) \\
\hline
\end{tabular}
(a)
\begin{tabular}{|c|c|c|}
\hline H & H & H \\
\hline T & H & T \\
\hline T & T & T \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline T & T & T \\
\hline T & T & T \\
\hline T & T & T \\
\hline
\end{tabular}
(c)

\section*{Figure 24.13}

The problem is solved when all coins are face down.

We will write a C++ program that prompts the user to enter an initial state of the nine coins and displays the solution, as shown in the following sample run.
```

Sample output
Enter an initial nine coin H and T's:
HHH
TTT
HHH
The steps to flip the coins are
HHH
TTT
HHH
HHH
THT
TTT
TTT
TTT
TTT

```

Each state of the nine coins represents a node in the graph. For example, the three states in Figure 24.13 correspond to three nodes in the graph. Intuitively, you can use a \(3 \times 3\) matrix to represent all nodes and use \(\mathbf{0}\) for head and \(\mathbf{1}\) for tail. Since there are nine cells and each cell is either \(\mathbf{0}\) or \(\mathbf{1}\), there are a total of \(2^{9}\) (512) nodes, labeled 0, 1, \(\ldots\), and 511, as shown in Figure 24.14.
\begin{tabular}{|l|l|l|}
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 1 \\
\hline
\end{tabular}
0
\begin{tabular}{|l|l|l|}
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hline 0 & 1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 0 & 0 & 0 \\
\hline 0 & 0 & 0 \\
\hline 0 & 1 & 1 \\
\hline
\end{tabular}
3
\begin{tabular}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{tabular}
512

Figure 24.14
There are total of 512 nodes, labeled in this order as 0, 1, 2, ..., and 511.

We assign an edge from node \(\mathbf{u}\) to \(\mathbf{v}\) if there is a legal move from \(\mathbf{v}\) to \(\mathbf{u}\). Figure 24.15 shows the directed edges to node 56.

408
\(488 \quad 240\)
30
\(47 \quad 51\)

\begin{tabular}{|l|l|l|}
\hline 0 & 0 & 0 \\
\hline 1 & 1 & 1 \\
\hline 0 & 0 & 0 \\
\hline
\end{tabular}

56

\section*{Figure 24.15}

If node \(v\) becomes node \(u\) after flipping cells, assign an edge from \(\mathbf{u}\) to \(\boldsymbol{v}\).

The last node in Figure 24.14 represents the state of nine face-down coins. For convenience, we call this last node the target node. So, the target node is labeled 511. Suppose the initial state of the nine tail problem corresponds to the node \(\mathbf{s}\). The problem is reduced to finding a shortest path from the target node to \(\mathbf{S}\) in a BFS tree rooted at the target node.

Now the task is to build a graph that consists of 512 nodes labeled \(\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, 511\), and edges among the nodes. Once the graph is created, obtain a BFS tree rooted at node 511. From the BFS tree, you can find the shortest path from the root to any vertex. We will create a class named NineTailModel, which contains the function to get the shortest path from the target node to any other node. The class UML diagram is shown in Figure 24.16.
\begin{tabular}{|c|c|}
\hline NineTailModel & \multirow[b]{3}{*}{\begin{tabular}{l}
A tree rooted at node 511. \\
Constructs a model for the nine tail problem and obtains the tree.
\end{tabular}} \\
\hline \#tree: Tree* & \\
\hline + NineTailModel() & \\
\hline + get Shortes tPath(nodeIndex: int): vector<int> & Returns a path from the specified node to the root. The path returned consists of the node labels in a vector. \\
\hline + get Node(index: int): vector<char & Returns a node con sisting of nine characters of H's and T's. \\
\hline + get Index(node: vector<char> \&): in & Returns the index of the specified nod \\
\hline +printNode(node: vector<char>\&): void & Displays the node to the console. \\
\hline \#getEdges(): vector<Edge> const & Returns a vector of Edge objects for the graph. \\
\hline \#getFlippedNode(n od e: vector \(<\) char \(>\) \& , position: int): int const & Flips the node at the specified position and returns the index of the flipped node. \\
\hline \#flipACell(node: vector<char> \& , row: int, column: int): void & Flips the node at the specified row and column. \\
\hline
\end{tabular}

\section*{Figure 24.16}

The NineTailModel class models the Nine Tail problem using a graph.

Visually, a node is represented in a \(3 \times 3\) matrix with letters H and T. In a C++ program, you can use a vector of nine characters to represent a node. The getNode(index) function returns the node for the specified index. For example, getNode(0) returns the node that contains nine H's. getNode(511) returns the node that contains nine T's. The getIndex (node) function returns the index of the node. The printNode(node) function displays the node visually on the console.

Note that the data field tree and functions getEdges(), getFlippedNode(node, position), and flipACell(\&node, row, column) are defined protected so that they can be accessed from child classes in the next chapter.

The getEdges ( ) function returns a vector of Edge objects.

The getFlippedNode(node, position) function flips the node at the specified position and returns the index of the new node. For example, for node 56 in Figure 24.16, flip it at position 0, and you will get node 51. If you flip node 56 at position 1, you will get node 47.

The flipACell(\&node, row, column) function flips a node at the specified row and column. For example, if you flip node 56 at row 0 and column 0 , the new node is 408 . If you flip node 56 at row 2 and column 0 , the new node is \(\mathbf{3 0}\).

Listing 24.9 shows the source code for NineTailModel.h.

\section*{Listing 24.9 NineTailModel.h}
```

\#ifndef NINETAILMODEL_H
\#define NINETAILMODEL_H
\#include <iostream>
\#include "Graph.h" // Defined in Listing 24.2
using namespace std;
const int NUMBER_OF_NODES = 512;
class NineTailModel
{
public:
// Construct a model for the Nine Tail problem
NineTailModel();
// Return the index of the node
int getIndex(vector<char>\& node) const;
// Return the node for the index
vector<char> getNode(int index) const;
// Return the shortest path of vertices from the specified
// node to the root
vector<int> getShortestPath(int nodeIndex) const;
// Print a node to the console
void printNode(vector<char>\& node) const;
protected:
Tree* tree;
// Return a vector of Edge objects for the graph
// Create edges among nodes
vector<Edge> getEdges() const;
// Return the index of the node that is the result of flipping
// the node at the specified position
int getFlippedNode(vector<char>\& node, int position) const;
// Flip a cell at the specified row and column
void flipACell(vector<char>\& node, int row, int column) const;
};
NineTailModel::NineTailModel()
{
// Create edges
vector<Edge> edges = getEdges();

```
```

 // Build a graph
 Graph<int> graph(NUMBER_OF_NODES, edges);
 // Build a BFS tree rooted at the target node
 tree = new Tree(graph.bfs(511));
 }
vector<Edge> NineTailModel::getEdges() const
{
vector<Edge> edges;
for (int u = 0; u < NUMBER_OF_NODES; u++)
{
for (int k = 0; k < 9; k++)
{
vector<char> node = getNode(u);
if (node[k] == 'H')
{
int v = getFlippedNode(node, k);
// Add edge (v,u) for a legal move from node u to node v
edges.push_back(Edge(v, u));
}
}
}
return edges;
}
int NineTailModel::getFlippedNode(vector<char>\& node, int position)
const
{ column
int row = position / 3;
int column = position % 3;
flipACell(node, row, column);
flipACell(node, row - 1, column);
flipACell(node, row + 1, column);
flipACell(node, row, column - 1);
flipACell(node, row, column + 1);
return getIndex(node);
}
void NineTailModel::flipACell(vector<char>\& node,
int row, int column) const
{
if (row >= 0 \&\& row <= 2 \&\& column >= 0 \&\& column <= 2)
{ // Within boundary
if (node[row * 3 + column] == 'H')
node[row * 3 + column] = 'T'; // Flip from H to T
else
node[row * 3 + column] = 'H'; // Flip from T to H
}
}
int NineTailModel::getIndex(vector<char>\& node) const
{
int result = 0; For example:

```
                                    node: THHHHHHTT
                                    index: 259
                                    \begin{tabular}{|ccc|}
\hline T & \(H\) & \(H\) \\
\(H\) & \(H\) & \(H\) \\
\(H\) & T & T \\
\hline
\end{tabular}
}
vector<char> NineTailModel::getNode(int index) const
{
    vector<char> result(9); For example:
    for (int i = 0; i < 9; i++) index: 259
    {
        int digit = index % 2;
        if (digit == 0)
        result[8 - i] = 'H';
        else
            result[8 - i] = 'T';
            index = index / 2;
    }
    return result;
}
vector<int> NineTailModel::getShortestPath(int nodeIndex) const
{
    return tree->getPath(nodeIndex);
}
void NineTailModel::printNode(vector<char>& node) const
{
    for (int i = 0; i < 9; i++) }\quadl
    for (int i = 0; i< 9; i++) }\quadl
            cout << node[i];
        else
            cout << node[i] << endl;
    cout << endl;
}
#endif
For example: node: THHHHHHTT output:
```

THH
H H H
H T T

```
```

 for (int i = 0; i < 9; i++)
    ```
```

 for (int i = 0; i < 9; i++)
 if (node[i] == 'T')
 if (node[i] == 'T')
 result = result * 2 + 1;
 result = result * 2 + 1;
 else
 else
 result = result * 2 + 0;
 result = result * 2 + 0;
 return result;
    ```
    return result;
```

148
149
150 151

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

The constructor (lines 45-55) creates a graph with 512 nodes, and each edge corresponds to the move from one node to the other (line 48). From the graph, a BFS tree rooted at the target node 511 is obtained and assigned to a pointer variable tree (line 54). We use a pointer for tree to enable tree to reference any type of Tree. Later in the next chapter, we will assign a ShortestPathTree to tree and ShortestPathTree is a subtype of Tree.

To create edges, the getEdges function (lines 57-76) checks each node \mathbf{u} to see if it can be flipped to another node \mathbf{v}. If so, add (\mathbf{v}, \mathbf{u}) to the Edge vector (line 70). The getFlippedNode (node, position) function finds a flipped node by flipping an \mathbf{H} cell and its neighbors in a node (lines 78-91). The flipACell(node, row, column) function actually flips an \mathbf{H} cell and its neighbors in a node (lines 93-103).

Note that the argument node is passed by value in getFlippedNode(node, position). What would happen if it is mistakenly passed by reference? After invoking getFlippedNode (node, k) line 68, the contents of node will be changed and node no longer corresponds to vertex \mathbf{u}.

The getIndex (node) function is implemented in the same way as converting a binary number to a decimal (lines 105-116). The getNode (index) function returns a node consisting of letters \mathbf{H} and \mathbf{T} 's (lines 118-133).

The getShortestpath(nodeIndex) function invokes the getPath(nodeIndex) function to get the vertices in the shortest path from the specified node to the target node (lines 135-138).

Listing 24.10 gives a program that prompts the user to enter an initial node and displays the steps to reach the target node.

Listing 24.10 NineTail.cpp

```
#include <iostream>
#include <vector>
#include "NineTailModel.h"
using namespace std;
int main()
{
    // Prompt the user to enter nine coins H and T's
    cout << "Enter an initial nine coin H's and T's: ";
    vector<char> initialNode(9);
    for (int i = 0; i < 9; i++)
            cin >> initialNode[i];
```

```
    cout << "The steps to flip the coins are " << endl;
    NineTailModel model;
    vector<int> path =
        model.getShortestPath(model.getIndex(initialNode));
    for (unsigned i = 0; i < path.size(); i++)
        model.printNode(model.getNode(path[i]));
    return 0;
}
The program prompts the user to enter an initial node with nine letters
H's and T's in lines 9-13, creates a model to create a graph and get the
BFS tree (line 16), obtains a shortest path from the initial node to the
target node (lines 16-17), and displays the nodes in the path (lines 17-
```

18).

Check point

24.20 How are the nodes created for the graph in NineTailModel?
24.21 How are the edges created for the graph in NineTailModel?
24.22 What is returned after invoking getIndex ("HTHTTTHHH".toCharArray()) in Listing
24.13? What is returned after invoking getNode (46) in Listing 24.13?
24.23 The statement in line 66 in Listing 24.13 NineTailModel.cpp is

```
vector<char> node = getNode(u);
```

Will the program work if it is moved to before line 64? Explain the reason.
24.25 If the flipACell function in NineTailModel.h is redefined as follows:

> void flipACell(vector<char> node, int row, int column);
what is wrong?

Key Terms

- adjacency list
- adjacent vertices
- adjacency matrix
- breadth-first search
- complete graph
- degree
- depth-first search
- directed graph
- graph
- incident edges
- parallel edge
- Seven Bridges of Königsberg
- simple graph
- spanning tree
- weighted graph
- undirected graph
- unweighted graph

Chapter Summary

1. A graph is a useful mathematical structure that represents relationships among entities in the real world.
2. A graph may be directed or undirected. In a directed graph, each edge has a direction, which indicates that you can move from one vertex to the other through the edge.
3. Edges may be weighted or unweighted. A weighted graph has weighted edges.
4. You can model graphs using classes and interfaces.
5. You can represent vertices and edges using arrays and linked lists.
6. Graph traversal is the process of visiting each vertex in the graph exactly once. Two popular ways of traversing a graph are depth-first search and breadth-first search.
7. The depth-first search of a graph first visits a vertex, then recursively visits all unvisited vertices adjacent to that vertex.
8. The breadth-first search of a graph first visits a vertex, then all its adjacent unvisited vertices, then all the unvisited vertices adjacent to those vertices, and so on.
9. DFS and BFS can be used to solve many problems, such as detecting whether a graph is connected, detecting whether there is a cycle in the graph, and finding a shortest path between two vertices.

Quiz

Do the quiz for this chapter online at www.cs.armstrong.edu/liang/cpp3e/quiz.html.

Programming Exercises

Sections 24.6-24.7
24.1* (Test whether a graph is connected) Write a program that reads a graph from a file and determines whether the graph is connected. The first line in the file contains a number that indicates the number of vertices (\mathbf{n}). The vertices are labeled as $\mathbf{0}, \mathbf{1}, \ldots, \mathbf{n - 1}$. Each subsequent line, with the format \mathbf{u} : v1, v2, ... , describes edges ($\mathbf{u}, \mathbf{v 1}$), ($\mathbf{u}, \mathbf{v 2}$), etc. Figure 24.17 gives the examples of two files for their corresponding graphs.

Figure 24.17

The vertices and edges of a graph can be stored in a file.

Your program should prompt the user to enter the name of the file, reads data from a file, creates an instance \mathbf{g} of Graph, invokes \mathbf{g}.printEdges() to display all edges, and invokes $\mathbf{d f s}(\mathbf{0})$ to obtain an
instance tree of Tree. If tree.getNumberOfVerticeFound () is the same as the number of vertices in the graph, the graph is connected. Here is a sample run of the program:

Sample output

Enter a file name: c:\exercise\Exercise24_1a.txt
The number of vertices is 6
Vertex 0: $(0,1)(0,2)$
Vertex 1: $(1,0)(1,3)$
Vertex 2: $(2,0)(2,3)(2,4)$
Vertex 3: $(3,1)(3,2)(3,4)(3,5)$
Vertex 4: $(4,2)(4,3)(4,5)$
Vertex 5: $(5,3)(5,4)$
The graph is connected
(Hint: Use Graph(numberOfVertices, vectorOfEdges) to create a graph, where vectorOfEdges contains a vector of Edge objects. Use Edge (\mathbf{u}, \mathbf{v}) to create an edge. Read the first line to get the number of vertices. Read each subsequent line to extract the vertices from the string and creates edges from the vertices.)
24.2* (Create a file for graph) Modify Listing 24.2, TestGraph.cpp, to create a file for representing graph1. The file format is described in Exercise 24.1. Create the file from the array defined in lines 16-29 in Listing 24.2. The number of vertices for the graph is 12, which will be stored in the first line of the file. The contents of the file should be as follows:

12

0: 1, 3, 5

1: 0, 2, 3
2: 1, 3, 4, 10
3: $0,1,2,4,5$
4: 2, 3, 5, 7, 8, 10

5: $0,3,4,6,7$
6: 5, 7
7: 4, 5, 6, 8
8: 4, 7, 9, 10, 11

9: 8, 11
10: 2, 4, 8, 11
11: 8, 9, 10
24.3* (Find a shortest path) Write a program that reads a connected graph from a file. The graph is stored in a file using the same format specified in Exercise 24.1. Your program should prompt the user to enter the name of the file, then two vertices, and displays the shortest path between the two vertices. For example, for the graph in Figure 24.17a, a shortest path between 0 and 5 may be displayed as 0135.

Here is a sample run of the program:

```
Sample output
    Enter a file name: c:\exercise\Exercise24_3a.txt
    Enter two vertices (integer indexes): 0 5 -Enter
    The number of vertices is 6
    Vertex 0: (0, 1) (0, 2)
    Vertex 1: (1, 0) (1, 3)
    Vertex 2: (2, 0) (2, 3) (2, 4)
    Vertex 3: (3, 1) (3, 2) (3, 4) (3, 5)
    Vertex 4: (4, 2) (4, 3) (4, 5)
    Vertex 5: (5, 3) (5, 4)
    The path is 0 1 3 5
```

24.4* (Implementing DFS using a stack) The depth-first search algorithm described in Listing 24.5 uses recursion. Implement it without using recursion.
24.5* (Find connected components) Add a new function in the Graph class to find all connected components in a graph with the following header:
vector<vector<int>> getConnectedComponents();
The function returns a vector. Each element in the vector is another vector that contains all the vertices in a connected component. For example, if the graph has three connected components, the function returns a vector with three elements, each of which contains the vertices in a connected component.
24.6* (Find paths) Add a new function in Graph to find a path between two vertices with the following header:
vector<int> getPath(int u, int v);
The function returns a vector that contains all the vertices in a path from \mathbf{u} to \mathbf{v} in this order. Using the BFS approach, you can obtain a shortest path from \mathbf{u} to \mathbf{v}. If there is no path from \mathbf{u} to \mathbf{v}, the function returns an empty vector.
24.7* (Detect cycles) Add a new function in Graph to determine whether there is a cycle in the graph with the following header:
bool containsCyclic();
24.8* (Find a cycle) Add a new function in Graph to find a cycle in the graph with the following header: vector<int> getACycle();

The function returns a vector that contains all the vertices in a cycle from \mathbf{u} to \mathbf{v} in this order. If the graph has no cycles, the function returns an empty vector.
24.9** (Test bipartite) Recall that a graph is bipartite if its vertices can be divided into two disjoint sets such that no edges exist between vertices in the same set. Add a new function in Graph to detect whether the graph is bipartite:
bool isBipartite();
24.10** (Get bipartite sets) Add a new function in Graph to return two bipartite sets if the graph is bipartite:
vector<vector<int>> getBipartiteSets();
The function returns a vector. Each element in the vector is another vector that contains a set of vertices.
$24.11^{* *}$ (Variation of the nine tail problem) In the nine tail problem, when you flip a head, the horizontal and vertical neighboring cells are also flipped. Rewrite the program, assuming that all neighboring cells including the diagonal neighbors are also flipped.
24.12** (4×416 tail model) The nine tail problem in the text uses a 3×3 matrix. Assume that you have 16 coins placed in a 4×4 matrix. Create a new model class named TailModel16. Create an instance of the model and save the object into a file named Exercise24_12.dat.
24.13** (Induced subgraph) Given an undirected graph $G=(V, E)$ and an integer k, find an induced subgraph H of G of maximum size such that all vertices of H have degree $>=k$, or conclude that no such induced subgraph exists. Implement the function with the following header:

Graph<V> maxInducedSubgraph(Graph<V> g, int k)
The function returns an empty graph if such subgraph does not exist.
(Hint: An intuitive approach is to remove vertices whose degree is less than k. As vertices are removed with their adjacent edges, the degrees of other vertices may be reduced. Continue the process until no vertices can be removed, or all the vertices are removed.)

