Problem 2

a) Is the estimated multiple linear regression model of **Sleep** with all variables listed in Problem 1 statistically significant at $\alpha = 0.01$? (State the relevant hypothesis test, rejection rule and your conclusion)

b) Compute r^2 of the multiple linear regression model and **interpret it**.

c) Which two predictors are most highly correlated with each other? Which two explanatory variables exhibit the smallest correlation?

d) Fill in an empty cell (Sleep/Female) in the correlation matrix.

e) Consider simple regressions of Sleep on each explanatory variable. Identify predictor(s) that are statistically significant at $\alpha = 0.05$ in the simple regressions but are not statistically significant at $\alpha = 0.05$ in the multiple regression. Give a reason for their lack of statistical significance in the multiple regression.

f) Before fitting the multiple regression models the students hypothesized that for every one cups increase in **CoffeeCups**, the expected decrease in **Sleep** is 0.4 of an hour. Based on the estimated model were they correct? Answer by constructing an appropriate 95% confidence interval or by using a hypothesis test with $\alpha = 0.05$.

g) They also thought that the average sleep time in the population of NYU undergraduate student is more that 7 hours. Is there evidence in the data, at $\alpha = 0.05$ that they were right? (State the hypothesis test, rejection rule and your conclusion)

Minitab output for problems 1 and 2

The regression equation is Sleep = 6.62 - 0.708 Female Predictor Coef SE Coef T P Constant 6.6250 0.2201 30.11 0.000 Female -0.7083 0.3112

S = 1.07802 R-Sq = 10.1% R-Sq(adj) = 8.2%

Descriptive Statistics: Sleep

Variable	Ν	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
Sleep	48	0	6.271	0.162	1.125	4.000	5.250	6.000	7.000	9.000

```
The regression equation is
Sleep = 5.94 + 0.0173 Age + 0.227 Study - 0.122 Extra - 0.583 Female
- 0.301 Cupscoffee
```

Predictor	Coef	SE Coef	Т	P
Constant	5.9399	0.9384	6.33	0.000
Age	0.01734	0.04436	0.39	0.698
Study	0.22737	0.07882	2.88	0.006
Extra	-0.1215	0.1231	-0.99	0.329
Female	-0.5826	0.2757	-2.11	0.041
Cupscoffee	-0.3009	0.1060	-2.84	0.007

S = 0.919914

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	5		4.7874	5.66	
Residual Error	42		0.8462		
Total	47	59.4792			

The regression equation is Sleep = 5.98 + 0.227 Study - 0.377 Cupscoffee

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 5.9755
 0.3433
 17.41
 0.000

 Study
 0.22720
 0.07493
 3.03
 0.004

 Cupscoffee
 -0.3765
 0.1015
 -3.71
 0.001

S = 0.957993 R-Sq = 30.6% R-Sq(adj) = 27.5%

Correlations: Sleep, Age, Study, Extra, Cupscoffee, Female

Age	Sleep 0.256 0.079	Age	Study	Extra	Cupscoffee
Study	0.306 0.035	0.373 0.009			
Extra	-0.290 0.045	-0.167 0.256	0.090 0.542		
Cupscoffee	-0.405 0.004	0.004 0.977	0.163 0.268	0.387 0.007	
Female		-0.155 0.293	0.089 0.547	0.156 0.288	0.166 0.259

Cell Contents: Pearson correlation P-Value