1. Suppose that we fit the following model to the n observations $\left(y_{1}, x_{11}, x_{21}\right), \ldots,\left(y_{n}, x_{1 n}, x_{2 n}\right)$:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\epsilon_{i},
$$

for $i=1, \ldots, n$, where all ϵ_{i} are identically and independently distributed as a normal random variable with mean zero and variance σ^{2} and every $x_{j i}$ is fixed.
(a) [25 Points] Suppose the above model is the true model. Show that at any observation y_{i}, the point estimator of the mean response and its residual are two statistically independent normal random variables.
(b) [25 Points] Suppose that the above model is the true model, but we fit the data to the following model (i.e., ignore the variable x_{2}):

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\epsilon_{i},
$$

for $i=1, \ldots, n$. Assume that $\bar{x}_{1}=0, \bar{x}_{2}=0$, and $\sum_{i=1}^{n} x_{1 i} x_{2 i}=0$. Derive the least-squares estimator of β_{1} obtained from fitting this new model. Is this least squares estimator biased for β_{1} in the original model? Why or why not?
2. Ten observations on the response variable y, associated with two regressor variables x_{1} and x_{2}, are given in the following table.

Observation No.	y	x_{1}	x_{2}
1	7	9	1
2	8	6	1
3	5	7	1
4	3	8	1
5	2	5	1
6	10	7	-1
7	9	6	-1
8	10	3	-1
9	9	4	-1
10	8	4	-1

The model fitted to these observations is

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\epsilon_{i},
$$

for $i=1, \ldots, n$, where all ϵ_{i} are identically and independently distributed as a normal random variable with mean zero and a known variance of $\sigma^{2}=3$.
(a) [25 Points] Test the null hypothesis, that there is no difference between the y-intercept for $x_{2}=1$ and the y-intercept for $x_{2}=-1$, at a statistical significance level of 0.05 .
(b) [25 Points] Now fit the following model to the above ten observations:

$$
y_{i}=\beta_{0}+\beta_{2} x_{2 i}+\epsilon_{i} .
$$

Calculate the variance of the residual for observation \#6. Make sure to state any assumption(s) used!

