
Friday, 7 December 2018

Network Simulation

Laboratory 1 - “The Manhattan Street Network”

DEADLINE: DECEMBER 13, 2018

In this lab, you will implement a topology known as MSN,
Manhattan Street Network (see figure on the right). In this
topology, nodes are laid out in a grid-like fashion and each node
is connected to other nodes through 4 unidirectional links, two
outgoing and two incoming. The direction of transmission of
messages in each “row” of the grid is inverted with respect to
adjacent rows. Likewise, the direction of transmission of
messages in each “column” of the grid is inverted with respect to
adjacent columns. Another way of looking at this topology is to
view it as a mesh of horizontal and vertical counter-rotating rings.

A characteristic of the MSN is that the average distance between
nodes (i.e., the average number of hops between any two nodes
with a shortest-path routing) is of the order of the square root of
the total number of nodes in the topology.

Modify the OMNET topology in the .ned file at Step 15 of the Tutorial so as to create a 25-node MSN
topology (i.e., 5 rows x 5 columns). Use 10ms delay channels for each connection. Hint: use ‘for’ loops to
set up the topology

LAB TASK 1.1: Hop count with random routing

Run the simulation performing random routing in Step 15 of the Tutorial, using the same C++ file, until any
one node has generated 10000*G/10 messages (where G is your Team number), then let the simulation
stop and collect the statistics.

Report in a table, for each node, the average number of hops needed to deliver a message sent from that
node in the following three cases:

A. All links of the topology are operational

B. Numbering the nodes from 0 to 24 in horizontal order and left to right, you disable the links
connecting node G to its predecessor and its successor in the same column (again, G is your team
number)

C. You disable all the links forming the vertical ring in the column where node G is.

What differences are there between the three cases and how do you justify them?

�1

Friday, 7 December 2018

LAB TASK 1.2: Message delivery delay

Define two types of delay channels: shortChannel and longChannel, with latency, respectively, of 10ms
and L ms. Use the longChannel on every link incoming and outgoing from node G, while shortChannel is
used everywhere else.

For each of the following values of t={10, 30, 50, 70, 90}, run 10 simulations with different seeds, stopping
each of them as in lab task 1.1, and report in a table, along with a 95% confidence interval, the average
delivery delay of the messages received by node (G+2), as a function of the parameter L.

Consider only case A. where all links are operational.

LAB TASK 1.3: Row/column routing

Identifying every node in the MSN topology using a pairwise address (i,j), where i indicates the row and j
indicates the column, implement a routing that no longer selects the output gate at random but, based on
the message destination address implements the following steps:

1. the message is forwarded on the horizontal ring until it intercepts the vertical ring where the
destination lays (unless the node is already on the destination vertical ring, in which case skip to
step 2.)

2. the message is forwarded on the vertical ring until it is received by the destination

Run the simulations in the same settings of Lab Task 1.2 and report the table for the average delivery
delay as you did in Task 1.2.

HINTS

• You can create a new project (preferable), or work in the existing ‘tictoc’ folder. In any case, keep in mind
that OMNET will complain if you have classes and modules by the same name in the same workspace.

• To compute confidence intervals, you can use a spreadsheet

• To run a simulation from the terminal command line, change your directory to your project folder (e.g.,
lab1), then type: ‘./lab1 -u Cmdenv omnetpp.ini’.

• Refer to Section 10.4 “Parameter study” on the Omnet++ Manual to learn how to run several simulations
with different seeds and different parameters using a single command line.

By December 13, submit a written report with:

• The answer to Tasks 1.1, 1.2, 1.3

• The .ini, .ned and C++ files you wrote for each of the tasks. Be sure to exhaustively comment your code.

To submit your report, follow the instructions on the portal

�2

Thursday, 13 December 2018

Network Simulation

Laboratory 2 - “Adding layers”

DEADLINE: DECEMBER 21, 2018

In this lab, you will extend the simulation framework you worked on in Lab 1 and implement a two-layer
architecture to distinguish between the task of routing messages from the task of generating (at the
source) and receiving messages (at the destination). Each node will thus be changed from a single simple
module into a compound module including three simple modules:

1. linkLayer : its task is simply to determine the next hop
that the message has to take on its way to the
destination, following whatever routing policy (random or
rows/columns) you have implemented in Lab 1. It
receives new messages from txapp and it delivers
messages that have reached their destination to rxapp.

2. rxapp : it is handed by linkLayer the messages that have
reached their final destinations. It destroys the
messages and, after a time Tia , it tells txapp to generate
a new message

3. txapp : it generates a new message every time it is
“woken up” by a message from rxapp.

LAB TASK 2.1: Hop count with random routing

Repeat the same topology and the same routing of Lab Task 1.3 and collect the same statistics, setting
Tia=0. You should obtain very similar results. This is a sanity check to make sure you have split the
functionalities in a correct fashion.

LAB TASK 2.2: A stop-and-wait protocol

Set to 0.1 the probability of discarding a message at the linkLayer module. Implement a stop-and-wait
protocol (using ACKs) to recover a lost message and retransmit it.

Computing the delivery delay as the time needed to receive a message including the time taken up by its
retransmission(s), collected the same statistics as Lab Task 2.1 (still using Tia=0 for now).

HINTS

• Use getParentModule() to access parameters and data of the compound module (such as its index
number) from the c++ code of one of its simple modules.

By December 21, submit a written report with:

• The answer to Tasks 2.1 and 2.2

• The .ini, .ned and C++ files you wrote for each of the tasks. Be sure to exhaustively comment your code.

�1

