

Consider two 2D images of the same spatial size, \mathbf{A}_H and \mathbf{B}_H . Both images can be represented as point sets, $\mathbf{A}_H = \{a_1, \dots, a_{N_a}\}$ and $\mathbf{B}_H = \{b_1, \dots, b_{N_b}\}$, respectively, where $\mathbf{A}_H, \mathbf{B}_H \subset \mathbb{R}^n$ such that $|\mathbf{A}_H|, |\mathbf{B}_H| < \infty$. From here, the distance between a point a and set of points, \mathbf{B}_H , is defined as:

$$d(a, \mathbf{B}_H) = \min_{b \in \mathbf{B}_H} \left(\sqrt{\sum_{b \in \mathbf{B}_H} (a - b)^2} \right) \quad (1)$$

and similarly, the distance between a point b and set of points, \mathbf{A}_H , is defined as:

$$d(b, \mathbf{A}_H) = \min_{a \in \mathbf{A}_H} \left(\sqrt{\sum_{a \in \mathbf{A}_H} (b - a)^2} \right) \quad (2)$$

D , can be described as:

$$D = \max \left\{ \frac{1}{|\mathbf{A}_H|} \sum_{a \in \mathbf{A}_H} d(a, \mathbf{B}_H), \frac{1}{|\mathbf{B}_H|} \sum_{b \in \mathbf{B}_H} d(b, \mathbf{A}_H) \right\} \quad (3)$$