Consider two 2D images of the same spatial size, $\boldsymbol{A}_{\boldsymbol{H}}$ and $\boldsymbol{B}_{\boldsymbol{H}}$. Both images can be represented as point sets, $\boldsymbol{A}_{\boldsymbol{H}}=\left\{a_{1}, \ldots, a_{N_{a}}\right\}$ and $\boldsymbol{B}_{\boldsymbol{H}}=\left\{b_{1}, \ldots, b_{N_{b}}\right\}$, respectively, where $\boldsymbol{A}_{\boldsymbol{H}}, \boldsymbol{B}_{\boldsymbol{H}} \subset \mathbb{R}^{n}$ such that $\left|\boldsymbol{A}_{\boldsymbol{H}}\right|,\left|\boldsymbol{B}_{\boldsymbol{H}}\right|<\infty$. From here, the distance between a point a and set of points, $\boldsymbol{B}_{\boldsymbol{H}}$, is defined as:

$$
\begin{equation*}
d\left(a, \boldsymbol{B}_{\boldsymbol{H}}\right)=\min _{b \in \boldsymbol{B}_{\boldsymbol{H}}}\left(\sqrt{\sum_{b \in \boldsymbol{B}_{\boldsymbol{H}}}(a-b)^{2}}\right) \tag{1}
\end{equation*}
$$

and similarly, the distance between a point b and set of points, $\boldsymbol{A}_{\boldsymbol{H}}$, is defined as:

$$
\begin{equation*}
d\left(b, \boldsymbol{A}_{\boldsymbol{H}}\right)=\min _{a \in \boldsymbol{A}_{\boldsymbol{H}}}\left(\sqrt{\sum_{a \in \boldsymbol{A}_{\boldsymbol{H}}}(b-a)^{2}}\right) \tag{2}
\end{equation*}
$$

D, can be described as:

$$
\begin{equation*}
D=\max \left\{\frac{1}{\left|\boldsymbol{A}_{\boldsymbol{H}}\right|} \sum_{a \in \boldsymbol{A}_{\boldsymbol{H}}} d\left(a, \boldsymbol{B}_{\boldsymbol{H}}\right), \frac{1}{\left|\boldsymbol{B}_{\boldsymbol{H}}\right|} \sum_{b \in \boldsymbol{B}_{\boldsymbol{H}}} d\left(b, \boldsymbol{A}_{\boldsymbol{H}}\right)\right\} \tag{3}
\end{equation*}
$$

