

STUDYDADDY

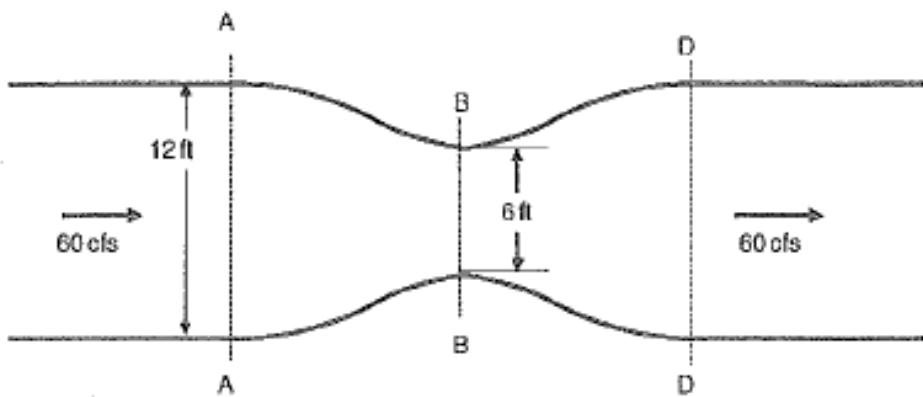
**Get Homework Help
From Expert Tutor**

Get Help

Problem #1

A trapezoidal channel has a bottom width of $b = 30$ ft and side slopes $m = 2$, and it carries $Q = 5100$ cfs. Use excel to solve this problem and also describe/interpret your results in words. Show all equations and units.

- (a) Calculate and plot the specific energy diagram for this channel. Use a depth range of 2 to 24 ft.
- (b) Three piers, each 2.5 ft wide, support a bridge spanning the channel at a bridge section. Assume that at this location the channel section is trapezoidal with $m = 2$ and $b = 30 - 3(2.5) = 22.5$ ft. Calculate the specific energy diagram at the bridge section. Plot the curve on the same graph as (a).
- (c) Determine the approximate flow depth at the bridge section if the depth upstream is 16 ft.


Problem #2

A hydraulic jump occurs in a 36-in storm sewer carrying 20 cfs. The flow depth just upstream of the jump is 1.0 ft. Determine the flow depth downstream of the jump.

Problem #3

Suppose the nearly horizontal, 12-ft wide rectangular channel shown below carries 60 cfs at a depth of 3 ft. The width is contracted to 6 ft at Section B. In addition, there is a smooth step rise of Δz in the channel bottom at the contracted section. Determine the flow depth at A and B for Δz of (a) 0.5 ft and (b) 1.0 ft and interpret your results.

Plan view of rectangular channel

Problem #4

Assuming no energy loss, what is the maximum value of Δz that will permit the unit flow rate of $6 \text{ m}^2/\text{s}$ to pass over the hump without increasing the upstream depth in the channel shown below?

①

②

STUDYDADDY

**Get Homework Help
From Expert Tutor**

Get Help