Get Homework Help From Expert Tutor Get Help ## **PROBLEM 1** Add x mg/l of Na₂CO₃ in distilled water and compute the various ionic species concentrations. Assume activity coefficients of unity, $K_w = 10^{-14}$, $K_1 = 4.31 \times 10^{-7}$, and $K_2 = 4.69 \times 10^{-11}$. Temperature T = 25 °C, x = 106 mg/l. ## **PROBLEM 2** If pH =10.0, Total Alkalinity = 100 mg/l as CaCO₃, temperature = 25 $^{\circ}$ C, ionic strength = 0.01, $K_1 = 4.31 \times 10^{-7}$, $K_2 = 4.69 \times 10^{-11}$, and $K_w = 10^{-14}$, calculate OH⁻, CO₃⁻², HCO₃⁻ and H₂CO₃⁺ in mg/l as CaCO₃. # **PROBLEM 3** If $Ca^{+2} = 30$ mg/l as $CaCO_3$, total alkalinity TA = 20 mg/l as $CaCO_3$, pH = 6.6 temperature T = 25 °C and ionic strength $\mu = 0$, how much lime ($Ca(OH)_2$ must be added to make water a saturated solution of $CaCO_3$? Assume $K_1 = 4.31 \times 10^{-7}$, $K_2 = 4.69 \times 10^{-11}$ and $K_{sp} = 4.55 \times 10^{-9}$ ($CaCO_3$). ### **PROBLEM 4** For the water analysis data given below: - 1. Express each ion concentration as ppm, meq/l, and mole/l; - 2. Draw a meq/l bar graph and list the hypothetical compounds; - 3. Check the ion balance; - 4. Determine the various forms of hardness (total, Ca, and Mg); - 5. Determine the various forms of alkalinity (carbonate and non-carbonate). | Ion | Concentration, mg/l | |--|---------------------| | Ca ⁺² | 42 | | Ca ⁺²
Mg ⁺²
Na ⁺ | 19 | | Na ⁺ | 8 | | \mathbf{K}^{+} | 3 | | HCO ₃ | 190 | | HCO ₃ ⁻
SO ₄ ⁻² | 28 | | Cl | 14 | # Get Homework Help From Expert Tutor Get Help