

Get Homework Help From Expert Tutor

Get Help

PROBLEM 1

An aeration system has been monitored to determine K_La. The dissolved oxygen versus time is shown in the following table. The saturation dissolved oxygen concentration is 9.0 mg/l. Use the data to determine K_La.

t, min	0	4	8	12	16	20	24	28
C, mg/l	1.2	2.4	3.7	4.3	5.0	5.6	6.0	6.6

PROBLEM 2

Given the following characteristics of an air stripping column to remove chloroform (CHCl₃) from ground water: Flow = 170 gpm, Column diameter = 3 ft, Packing = 2 in polypropylene ($\sigma_e = 0.033$) Tri-packs, $D_L = 6 \times 10^{-6}$ cm²/s, $D_G = 0.09404$ cm²/s. Air-to-water ratio = 100÷1. Determine the overall mass transfer coefficient K_L a using the Onda correlation. Assume 20 °C. Henry's constant can be approximated using

the following expression:
$$\mathbf{H} = \exp\left[\mathbf{A} - \frac{\mathbf{B}}{\mathbf{T}}\right]$$
 with A = 9.84 and B = 4.61·10³.

PROBLEM 3

A ground water supply has been contaminated with ethylbenzene (EB). The maximum level of EB in the groundwater is 1.0 mg/l and this must be reduced to 35 μ g/l using an air stripping column. The following data are given: $K_L a = 0.016 \text{ s}^{-1}$, $Q_W = 7.13 \text{ l/s}$, Temperature = 20° C, $H = 6.44 \times 10^{-3} \text{ atm·m}^{3}/\text{mol}$, Column diameter = 2.0 ft, Air-to-water ratio $(Q_A/Q_W) = 20$. Determine:

- a) The liquid loading rate, L, mol/s·m²
- b) The stripping factor, R, dimensionless
- c) HTU (m), NTU (dimensionless)
- d) The height of packing in column, m.

PROBLEM 4

The following data were obtained in a laboratory study conducted for the determination of the overall volumetric mass transfer coefficient in a packed bed air stripping unit with a diameter of 1 m and a height of 4m equipped with 4 equidistant sampling ports along its height. Contaminated groundwater containing an initial TCE concentration of 230 μ g/l was fed to the stripping column at 1 m³/m²-min. The air to liquid ratio was 100. Based on the data determine $K_L\alpha$ (s⁻¹). Henry's constant for TCE is 0.428.

Depth, m	-0	1	-2	3	-4
TCE, µg/l	230	140	80	50	30

Get Homework Help From Expert Tutor

Get Help