Exercise 1: Given the contour as sketched in Figure 1, where all points (x, y, z) on C satisfy $x^{2}+y^{2}=16$ and $0<z<10 \pi$

1. Find a parametrization. Take into account the arrow in the figure, indicating the direction this curve is traversed.
2. Find the length from $(4,0,0)$ to $(4,0,10 \pi)$
3. Find $\int_{C} y \sin (z) d s$

Figure 1: Circular Helix Line Path

Exercise 2: Consider the line integral:

$$
\begin{equation*}
\int_{C}\left(-y+\frac{1}{3} y^{3}+x^{2} y\right) d s \tag{1}
\end{equation*}
$$

If C is a circle centred at the origin with radius r, for what values of r does the integral become 0 ?

Exercise 3: A hollow spherical bowl has an inner radius of R and a shell with thickness d, so the outer radius is $R+d$. See Figure 2. For the sake of reference,

Figure 2: Hollow spherical bowl, corresponding to exercise 2.
we have indicated coordinates x, y, z. So the lowest point of the bowl is located at coordinates $x=0, y=0, z=-(R+d)$.

1. Give an expression for the volume occupied by the shell material in the form of a 3-d integral. Explicitly provide the bounds and the order of integration.
2. Compute this volume
3. The mass of the material of the shell has a density μ that is highest at the bottom of the shell of the bowl. This density is given by

$$
\mu(x, y, z)=-k z+1
$$

where k is a positive constant. Give an expression for the total mass of the shell in the form of a 3-d integral. Explicitly provide the bounds and the order of integration.
4. Compute the mass of the shell.

Hints: the volume of an object can be obtained by integrating 1 over this volume: $\iiint_{V} 1 d V$, and the mass by $\iiint_{V} \mu d V$.

Exercise 4: Derive the Laplace equation in Spherical coordinates;

Use

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0 \tag{2}
\end{equation*}
$$

To prove

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}+\frac{\cot (\phi)}{r^{2}} \frac{\partial u}{\partial \phi}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}+\frac{1}{r^{2} \sin ^{2}(\phi)} \frac{\partial^{2} u}{\partial \theta^{2}}=0 \tag{3}
\end{equation*}
$$

Make sure to clearly state the coordinate transform you perform.

Exercise 5: Consider the sphere $x^{2}+y^{2}+z^{2}=2$ and the cone $z=\sqrt{x^{2}+y^{2}}$

1. Find the surface area of the lower part of the sphere cut off by the cone.
2. Find the outward flux of $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$ through this area.
