

 STUDYDADDY
 	How it Works
	Homework Answers
	
 Ask a Question
	Top Tutors
	FAQ
	Sign in

 StudyDaddy

 Article Writing
 This assignment has three problems, worth a total of 26 points. • Removing Vocals (6 pts): Write a function to remove the vocals from a sound object. • Fading (16 pts): Write functions to add a fade-i This assignment has three problems, worth a total of 26 points. • Removing Vocals (6 pts): Write a function to remove the vocals from a sound object. • Fading (16 pts): Write functions to add a fade-i

 COMP 110 - Problem Solving Assignment 2 Due: Tuesday, February 18 @ 10:00PM Required Background: • Textbook Chapters 1, 2, 4, and 5; Sections 6.1, 6.2, and 6.4 Assignment Overview: This assignment has three problems, worth a total of 26 points. • Removing Vocals (6 pts) : Write a function to remove the vocals from a sound object. • Fading (16 pts) : Write functions to add a fade -in and fade -out effect to a sound object. • Panning (4 pts) : Write a function to add a panning effect (from left to right) to a sound object. Before you start coding, make sure you read through this whole document. If any of the instructions aren’t clear, feel free to ask about it on Piazza (use the psa2 folder). At the end of the document is a reference section on using the sound module that you may want to use if you cannot remember how to do specific things with sounds. Initial Setup Both you and your partner will need to get the starter code for your group using Git. 1. In VS Code, open the command palette and select the “Git Clon e” option. 2. When prompted for the repository URL, enter the following, with X replaced by your group number (e.g. 7 or 12). ssh:///comp110 -sp20 -s0 1-psa2 -groupX 3. When prompted for where to save the repository, select the “comp110” folder you created for PSA #1. If you happen to get an error, make sure you click the “Git Log” button when prompted and look for the reported error message. Look at Piazza to see if anyone else got the same error message: if not, create a new post, copying and pasting the output of the Git log. 4. Choose the “Open Repository” option in the window that pops up in the lower -right corner of the screen. The repository should contain a file named audio_filters.py , which is where you will put all of the code you write for this assignment. You’ll also see another python file, sound.py , that contains our sound module code: do not edit this file in any way. Finally, you’ll notice a bunch of WAV audio files that you will use to test your code. Next, you will need to install a few extra modules using Python’s “pip” installer. 1. In VS Code, open up a Terminal window if you don’t already have one open. Recall that you can go to “View” and then “Terminal” to open the terminal. 2. Make sure that the VS Code terminal you have open is NOT running a Python REPL. If it is, switch to a terminal that isn’t running a REPL. 3. In the terminal, enter the following commands. Note that if you are using Windows, replace “python3” with “python”. python3 -m pip install -U numpy python3 -m pip install -U scipy python3 -m pip install -U sounddevice 4. Test that it worked by starting a Python REPL (using the VS Code command palette, like you learned in Lab 2). In the REPL, test out the following imports to make sure you don’t get any e rrors. import numpy import scipy import sounddevice If you run into any problems, check Piazza to see if you can find the solution there. Otherwise, post a new question with the exact error message you get when doing the imports. Note that when working on the PSA, you should be careful to only work on one computer at a time (either you or your partner’s). If you want to switch between computers, make sure you “Sync” your code, using the same steps as in Problem 2 of PSA #0. We also recommend that you stage changes, commit those changes, and sync the changes every time you finish one of the computational problems listed in this assignment. This ensures that you won’t lose any of your work in case your computer gets lost or a file get s accidentally deleted. When committing, use a descriptive message, such as “completed the remove_vocals function.” Finally, remember when VS Code closes your repository when you exit and restart it. Use the “Open Recent” option (in the “File” menu) to reo pen it if you can’t find it. Computational Problems In lab session 3, you were introduced to the sound module, which provides some classes that allows us to work with digital audio. The following problems all require the use of this module. See the followi ng sections if you need a refresher on digital audio and a reference on how to use the sound module. Problem 1: Removing Vocals For this first problem, you will write a function that makes a Sound object that is the same as another sound, but with the voca ls (e.g. singing) removed. Examining the Effect Before you do any coding, you want to make sure you understand what the effect should sound like. Make sure your PSA repository is open in VS Code; if it’s not already open, you can go to “File” and “Open Rec ent” to re -open it. Now start a REPL and enter the following code in to play the original sound, followed by the sound with the vocals removed. import sound love_sound = sound.load_sound("love.wav") love_sound.play() # wait a few seconds for the song to play... no_vocals = sound.load_sound("love_novocals.wav") no_vocals.play() While it isn’t perfect, you should notice that compared to the original, the vocals are (mostly) gone. Exit the REPL now (by typing in “exit()”) and close the REPL tab in VS Code (by clicking the Trash Can icon). Writing the remove_vocals Function You will implement the vocal removal filter in a function named remove_vocals . The function header line for this function is given below. This header is already part of the starter code in audio_filters.py so open that file and locate this function: this is where you’ll write the code for this function. def remove_vocals(original_s ound): The remove_vocals function takes a sound object original_sound as a parameter, and creates and returns a new sound with vocals removed using the algorithm described below. The original sound should not be modified in any way. The algorithm for remov ing vocals works as follows. Recall that any all stereo samples contain integer values for both the left and right channels. For each sample (s) in original_sound do the following: • Compute (s.left - s.right) / 2, assigning this value the name new_value. • Re assign both the left and right channels to new_value. Here’s an example. Let’s say that original_sound contains the following three samples, each composed of two values: (left, right): • (1010, 80) • (1500, -4200) • (-65, 28132) Your program will produce a new Sound object consisting of the following three samples: • (465, 465) • (2850, 2850) • (-14098, -14098) If you do the math, you’ll notice that the values in the third sample should have both been the fractional number -14098.5; but sample values must be integ ers. Make sure you use the integer division operator in (i.e. “//”) to produce an integer rather than a floating point number. You should not use the int() function to convert from floating point to decimal: if you use “//”, the result will automatically b e converted to an integer. Keep this in mind for all of the functions you write in this assignment. For this (and almost all other functions in this assignment), you should start off by creating a copy of the original sound using the copy function (see the reference section at the end if you need help with this). This copy is the Sound object you will modify. At the end of your function, you should return this copy so that the caller can assign a name to it and use it later (e.g. by playing it or displaying its waveforms). Testing the remove_vocals Function After writing the function, you should now test it to see if it works. Later we’ll explore efficient ways to test our code, but for now we’ll test things out using the REPL. Start a new REPL and enter the following code to test the function you just wrote. import sound import audio_filters love = sound.load_sound("love.wav") love_no_vocals = audio_filters.remove_vocals(love) love_no_vocals.play() # You can use the stop method if you want to stop the sound If it worked correctly, you should hear the same “removed vocals” version of the love sound as you played initially. If you didn’t notice the correct effect, you’ll have to debug your code by tracking down the cause of the problem, fixing the pro blem, then test again. IMPORTANT: It’s important that you exit the REPL and restart it before testing again. This is because “import audio_filters” creates a copy of the audio_filters module that sticks around until you exit the REPL; any changes you make to audio_filters.py won’t go into effect until you restart the REPL and do the import again. This is a bit annoying, but luckily you can save yourself some typing, by using the up and down arrow keys on your keyboard while in the REPL to go through your hi story of Python statements. Exit the REPL and close the window when you are done testing. IMPORTANT: At this point, you should synchronize your code with our Git server. From the Git menu in VS Code, click on the “+” next to the modified file (audio_filter s.py), then enter a commit message that says “completed the remove_vocals” function, and final click “…” and choose “Sync” to sync your code. Grading remove_vocals The remove_vocals function is worth (6 pts), broken down as follows. • Vocals correctly removed using specified algorithm. (3 pts) • Effect works on all samples in sound. (1 pts) • Original sound not modified. (2 pts) Aside: Why This Filter Works For the curious, a brief explanation of the vocal -removal algorithm is in order. As you noticed from the algorithm, we are simply subtracting one channel from the other and then dividing by 2 (to keep the volume from getting too loud). So why does subtracting the right channel from the left channel magically remove vocals? When music is recor ded, it is sometimes the case that vocals are recorded by a single microphone, and that single vocal track is used for the vocals in both channels. The other instruments in the song are recorded by multiple microphones, so that they sound different in both channels. Subtracting one channel from the other takes away everything that is “in common” between those two channels which, if we’re lucky, means removing the vocals. Of course, things rarely work so well. Try your vocal remover on this badly -behaved wav file (cartoon.wav). Sure, the vocals are gone, but so is the body of the music! Apparently some of the instruments were also recorded “centred,” so that they are removed along with the vocals when channels are subtracted. When you’re tired of that one, tr y this harmonized song (harmony.wav). Can you hear the difference once you remove the vocals? Part of the harmony is gone! Problem 2: Fading In and Out For this problem, you will be writing three functions that will produce fade -in and fade -out effects. As with Problem 1, these functions should not modify the original sound object: they should create a copy of that original, modify the copy, then return that copy. Fade -in The “fade in” filter creates an effect where the beginning of the sound is silent, but it slowly builds up 100% of the normal volume for the sound. Examining the Fade -In Effect The following figures shows what the original sound wave (based on water.wav) looks like compared to the sound wave after the filter has been applied to fade in for two seconds. Notice how during the first second, the waves start off at 0% of the original volume and gradually build to being the same as the original. Before After To hear the filter in action, you’ll once again use your REPL to play the sounds. Open up a new REPL and enter the following code to hear the filter. import sound water_sound = sound.load_sound("water.wav") water_sound.play() # wait a few seconds for the monotonous water bubbling sounds to finish faded_water = sound.load_sound("water_shortfade.wav") faded_water.play() Notice how the sound gradually builds up over the first two seconds? Pretty cool, eh? Writing the fade_in Function Your starter code contains the following header for a fade_in function that you wi ll need to fill in for this problem. def fade_in(original_sound, fade_length): This function has two parameter: 1. The original sound object. 2. An integer indicating the number of samples to which the fade -in will be applied. For example, if fade_length is 88200, the fade -in should not affect any sample numbered 88200 or higher. (Reminder: The first sample in a sound is numbered 0.) Note that unli ke the remove_vocals function, the starter code does not contain a complete docstring comment for the fade_in function. You should start by filling in this comment, using the same format that was used in the given remove_vocals docstring comment. If we wer e to call fade_in but with the length set to the total number of samples in the water sound, we get water with a long fade -in. The fade -in is slowly and linearly applied over the entire duration of the sound, so that the maximum volume is reached only at the very last samp le. To apply a fade -in to a sound, we multiply successive samples by larger and larger fractional numbers between 0 and 1. Multiplying samples by 0 silences them, and multiplying by 1 (obviously) keeps them the same. Importantly, multiplying by a factor be tween 0 and 1 scales their volume by that factor. Here’s an example. Assume fade_length is 4, meaning that I apply my fade -in over the first four samples (samples numbered 0 to 3). Both channels of those samples should be multiplied by the following factor s to generate the fade -in: Sample Number Multiply By.. . 0 0.0 1 0.25 2 0.5 3 0.75 > 3 Do Not Modify the sample Note that because your multiplier is a floating point number, when you multiply it by the left or right channel value in your sample, you will end up with a floating point value. When you reassign the left and right channel values, you need to use the int() function to convert this value to an integer: if you don’t you’ll get an error saying that the channel value must be an int. Testing the fade_in Function Once again, you should test your function in the REPL. Here is some code for you to enter in a (new) REPL to help you do that. Notice how similar it is to the test code for remove_vocals . import sound import audio_filters water = sound.load_sound("water.wav") water_with_fade = audio_filters.remove_vocals(water, 88200) water_with_fade.play() # display the after waveforms and compare them to the example given above water_with_fade.display() If it worked correctly, it should sound exactly like the faded in sound you played earlier. If you didn’t notice the correct effect, you’ll have to debug your code by tracking down the cause of the problem, fixing the problem, then test again. IMPORTANT: At this point, you should synchronize your code with our Git server. As you did earlier, stage your changes by clicking the “+” butto n, write a descriptive commit message (“finished the fade_in function”) and select the “Sync” option. Grading fade_in The fade_in function is worth (6 pts), broken down as follows. • Correct fading in effect. (2 pts) • Fading effect only for the specified numb er of samples. (2 pts) • Original sound not modified. (1 pts) • Correct docstring comment at beginning of function and appropriate comments in the function body. The docstring comment must be in the same exact format is the one given to you for remove_vocals . (1 pt) Fade -out The next audio filter you will write is a fade -out effect. This filter is the opposite of the fade - in: it will start at 100% normal volume and linearly decrease to 0%, applied to the end of the sound. The waveforms below show the effect of applying the fade -out filter to the rain.wav for the final 2 seconds (i.e. 88200 samples) of the sound. Before After Use the REPL code in the “Examining the Fade -In Effect” section as a guide to playing the before and after audio files for this example, namely rain.wav and rain_shortfade.wav . Writing the fade_out Function In the audio_filters.py file, locate the following function header for the fade_out function. def fade_out(original_sound, fade_length): This function again takes a sound object and an integer indicating the length of the fade.
 However, this time, the fade is a fade -out (from loud to quiet), and the fade -out begins fade_length samples from the end of the sound rather than from the beginning . For example, if fade_length is 88200 and the length of the sound is samp samples, the fade -out should only affect samples numbered samp -88200 up to samp -1. As with the fade_in function, the first step in writing the function is to fill in the docstring comment. Do that now, once again using the exact format shown earlier. The multiplicative factors for fade_out are the same as for fade_in, but are applied in the reverse order. For example, if fade_length were 4, the channels of the fourth -last sample woul d be multiplied by 0.75, the channels of the third -last sample would be multiplied by 0.5, the channels of the second -last sample would be multiplied by 0.25, and the channels of the final sample in the sound would be multiplied by 0.0. Once again, don’t f orget to use the int() function to convert floating point to integer values to you can assign them to your left and right channels. Testing the fade_out Function Using the code in the “Testing the fade_in Function” section as a guide, use the REPL to test your fade_out function after you have written it. If the effect isn’t correct, figure out the error, correct it, then try again (after restarting the REPL). IMPORTANT: At this point, you should synchronize your code with our Git server. Your commit message should indicate that you finished the fade_out function. Grading fade_out The fade_out function is worth (6 pts), broken down as follows. • Correct fading out effect. (2 pts) • Fading effect only for the specified number of samples. (2 pts) • Original sound not modified. (1 pts) • Correct docstring comment at beginning of function and appropriate comments in the function body. The docstring comment must be in the same exact format is the one given to you for remove_vocals . (1 pt) Fade The final filter you will write for this problem is a fade effect that performs both a fade -in and a fade -out. The waveforms below demonstrate this effect, when applied to the grace.wav file. Before After Writing the fade Function Locate the following function header for the fade function in your audio_filters.py file. def fade(original_sound, fade_length): The fade_length parameter applies to both the fading in portion of the effect (at the beginning of the sound) and the fading out portion (at the end). In theory, if you put in a large enough number for fade_length , the fade in and fade out parts could overlap but for sim plicity you can assume no one will ever use an integer that big. As before, the first step in writing the function is to fill in the docstring comment. Do that now. To avoid duplication of code, your implementation of fade must make calls to your fade_in and fade_out function. If you do this correctly, you should need less than 5 lines of code for this function and should not use any for loops. Testing the fade Functi on Once again, use your previous testing code as a guide for testing out the fade function. We recommending using the grace.wav file for your tests as it contains music with an abrupt beginning and end that will greatly benefit from fading. Setting the fad e_length to 88200 should produce a aurally pleasing result. As usual, if you encounter any issues while testing, identify their cause, fix the problem, and run the test again. IMPORTANT: At this point, you should synchronize your code with our Git server. Your commit message should indicate that you finished the fade function. Grading fade The fade function is worth (4 pts), broken down as follows. • Correct fading out effect. (1 pt) • Fading effect only for the specified number of samples. (1 pt) • Uses fade_in and fade_out functions to implement this function. (1 pt) • Correct docstring comment at beginning of function and appropriate comments in the function body. (1 pt) Problem 3: Panning from Left to Right The final audio filter you will write is one to produce a panning effect. This effect, make it seem as though the sound is moving from the left speaker to the right speaker. The waveforms below show this effect: notice how at the beginning, the left channe l fades out while the right channel fades in. Before After To hear this effect, use the REPL to play both the airplane.wav (before) and airplane_pan.wav (after). Writing the left_to_right Function Locate the function header for the left_to_right function in your starting code. def left_to_right(original_sound, pan_length): The pan_length parameter is similar to the fade_length parameter from before: it limits how many samples will be changed by this filter. Before moving on, fill in this function’s docstring comment. Getting a sound to move from left to right like this requires a fade -out on the left channel and a fade -in on th e right channel. Unfortunately, you won’t be able to reuse your fade_in and fade_out functions to help you for this function, as both those functions work on both channels while you want each effect to happen on only one channel for this filter. Here’s an example. Assume pan_length is 4. The following table indicates the factors by which the channels of these samples should be multiplied: Sample Number Multiply Left Channel By… Multiply Right Channel By… 0 0.75 0.0 1 0.5 0.25 2 0.25 0.5 3 0.0 0.75 > 3 Do Not Modify the sample Do Not Modify the sample If you run left_to_right on only a prefix of a sound (i.e. you use a pan_length that is less than the length of original_sound), you’ll get strange (though expected) results. For example, if you pan the first 441000 samples of love.wav , you’ll hear it pan from left to right over the first ten seconds, then you’ll hear a click followed by the remainder of the song played in the ce ntre. Why This Filter Works To understand how this function works, it might help to think of changing the volume using two volume controls: one for the left channel and one for the right. To make the sound seem like it’s moving from left to right, you slow ly lower the volume in the left ear and raise the volume in the right ear. There is no copying going on between the two channels. Testing the left_to_right Function Using your experience from before, use the REPL to test your left_to_right function, this time using the airplane.wav as the source for your original sound. For the record: this technique only works when corresponding samples of both channels are the same. Experiment with this dog and lake sound (doglake.wav) to see what happens when channels co ntain different sounds. IMPORTANT: At this point, you should synchronize your code with our Git server. Your commit message should indicate that you finished the left_to_right function. Grading left_to_right The left_to_right function is worth (4 pts), broken down as follows. • Correct panning effect. (2 pts) • Panning effect only for the specified number of samples. (1 pts) • Correct docstring comment at beginning of function and appropriate comments in the function body. (1 pt) Su bmission Instructions Important : To be safe, you should run your final code on both you and your partner’s computers. This will ensure that you are not relying on any special setup on your own computer for the code to work. To submit your code, you will need to synchronize it using Git. To make sure your changes are saved and synchronized, follow these steps. 1. Open the “Source Control” menu, either by clicking on the 3rd icon on the left (right under the magnifying glass) or by going to “View” and “SC M”. 2. Your audio_filters.py file should show up under the “Changes” section. Click on the “+” icon to the right of the audio_filters.py filename to “stage” the changes. This should move the file to a section named “Staged Changes.” 3. Commit your changes by typ ing in a descriptive message (e.g. “finished the PSA”) into the “Message” textbox (above the Staged Changes area). After entering the message, click the checkmark icon above the message box to perform the commit. This should remove the audio_filters.py fil e from the Staged Changes section. 4. Finally, Sync your commit(s) to the server by clicking the “…” (to the right of the checkmark from the last step) and select the “Sync” option. This will likely result in a pop -up notifying you that the sync will do a pus h and a pull. Select “OK” (or “OK and don’t ask again”) to complete the sync. If you run into problems, make sure you are properly connected to the Internet and try the Sync again. If you are still running into problems, check Piazza and ask a new question there if the answer doesn’t already exist. Finally, to make sure that your changes were synced correctly, have your partner do the final step above (namely “…” and then “Sync”). This should fetch the changes you made. You can then test on their computer t o make sure it works exactly the same as on your computer. If your partner has trouble accessing and/or running the file, it is likely that the grader will also have problems and your grade will be negatively impacted. Background: Sound Waves and Digital A udio Sound waves are variations in air pressure caused by a vibrating object, such as your hands clapping or your vocal cords producing a thorough definition of local and global variables in Python. Over the course of millennia, ears have evolved to detect these sound waves and help animals hear things in their environment. Much more recently, microphones have been developed to convert these mechanical vibrations into electrical form. Once in electrical form, they can be recorded on a computer in digital fo rmat, where they can be processed in some way. The following short videos provide a nice overview of sound waves, including their graphical representation and how the shape of sound waves affect not only the loudness of a sound but also its tone/pitch. • Aud ioPedia 101: Sound Waves Hearing (1): https://youtu.be/HlGrV63G5ao • AudioPedia 101: Sound Waves Hearing (3): https://youtu.be/1ZhfQJvSMsQ When a microphone recor ds sound, it takes a measure of the air pressure and returns it as a value. These values are called samples and can be positive or negative corresponding to increases or decreases in air pressure (or positive and negative voltages, when converted to electr ical form). Each time the air pressure is recorded, we are sampling the sound. Each sample records the sound at an instant in time; the faster we sample, the more accurate is our representation of the sound. The sampling rate refers to how many times per s econd we sample the sound. Sampling rates of 11025 (bad quality; e.g. for VOIP conversations), 22050, and 44100 (CD quality) are common; the higher the sample rate, the better the audio quality. Also affecting audio quality is the size of each sample, sometimes referred to as the sample_size or bit depth . The larger the sample size, the more distinct values we can hold per sample, allowing for us to accurately represent smaller variations in volume. Common sample size values are 16 -bit (allowing for around 64000 distinct values per sample) and 24 -bit (allowing for around 16,000,000 distinct values per sample). Samples are integer numbers, either positive or negative depending on whether the sound wave is above or below the x -axis in the waveform. Sounds recordings are classified as either monaural (mono) or stereophonic (stereo). The difference is in the number of distinct values (a.k.a. channels) recorded for a sample: mono sounds have a single value while stereo sounds have two values. Stereo so unds typically have a “left channel” and “right channel” that allows you to independently control left and right speakers, thereby adding some direction to your sound. In this assignment, we’ll deal exclusively with stereo sounds. Some of the sound files i n this assignment are modified versions of sounds from acoustica.com . Reference: The sound Module For this class we will be working with a custom Python module named sound . This module (given as part of the starter code) contains functions for working with sound files. The sound module includes three new types of objects: Sound , StereoSample , and MonoSample . A Sound object is a sequence of sample objects, either StereoSample objects or MonoSample objects depending on the type of sound. For this assignment, you can assume sounds will be stereo, therefore all of the samples will be StereoSample objects. A StereoSample object contains both a left channel value and a right channel value, that you can both get and set. In the following sections, we will briefly describe how to create and work with these new types of objects. Creating Sound Objects To create a sound object, you may use one of the following functions: • sound.load_sound(filename) : Creates a new Sound object from file filename • sound.copy(snd) : Creates a new Sound object that is an exact copy of the existing Sound object (snd) that you give it. The following Python code demonstrates how to create a Sound object based on a digital au dio data found in the love.wav and create a second sound object that is a copy of that sound. import sound love_sound = sound.load_sound("love.wav") print(type(love_sound)) # prints out second_love = sound.copy(love_sound) Playing and Stopping Sounds Once we have a Sound object, we can control its playback using the play and stop methods. For example, to create a new sound and play it, we could use the following Python code. import sound love_sound = sound.load_ sound("love.wav") love_sound.play() Getting and Working with Samples For this assignment, you will need to modify individual samples of a Sound. To access a specific sample, we can use indexing operator (i.e. []) on a Sound object. For example, to get get the 5th sample in our love_sound object, we would do the following. love_sound = sound.load_sound("love.wav") sample = love_sound[4] print(type(sample)) # prints out Once you have a StereoSample , you can access its right and left channel values using its left and right attributes. Continuing our previous example, we could print out the left and right channel values of our 5th sample using the following code. left_channel_value = sample.left print (left_channel_value) # prints left channel's value (an integer) print(sample.right) # prints right channel's value (an integer) We can also modify the sample’s left and right channel values by assigning new values to the left and right attributes. For ex ample, if we want to silence the left channel of our sample (i.e. set it to 0) and half the value in the right channel, we could do the following. sample.left = 0 sample.right = sample.right // 2 Beware: you can only assign the left and right channels to i nteger values. For example, assigning them to 8.7 will result in an error. Looping Through Many Samples in a Sound Even a short Sound object contains thousands of samples. To process many of them at once, we could either repeat the same line of code thousa nds of times (boo!) or make use of a loop (yay!). For example, we could print out the left channel value of the first 20 samples in our love Sound using the following code. for i in range(20): sample = love_sound[i] print(sample.left) If we want to loop through all of samples in a Sound, we need to know how many samples are there. Luckily we can use the len function to give us that information. For example, "len(love_sound) would give us the number of samples in the love Sound. We could therefore print the right channel for all samples in our love Sound using the following code. for i in range(len(love_sound)): sample = love_sound[i] print(sample.right)

 GET YOUR EXPERT ANSWER ON STUDYDADDY

 Post your own question
and get a custom answer

 GET ANSWER

 [image: LET'S ORDER THE BEST ASSIGNMENT SERVICES]

 Have a similar question?

 Continue to post
 Continue to edit or attach image(s).

 	
 [image: Fast and convenient]
 Fast and convenient

 Simply post your question and get it answered by professional tutor within 30 minutes. It's as simple as that!

	[image: Any topic, any difficulty]
 Any topic, any difficulty

 We've got thousands of tutors in different areas of study who are willing to help you with any kind of academic assignment, be it a math homework or an article.

	
 [image: 100% Satisfied Students]
 100% Satisfied Students

 Join 3,4 million+ members who are already getting homework help from StudyDaddy!

 	Homework Answers
	Ask a Question
	Become a tutor
	FAQ
	Contact Us
	Privacy Policy
	DMCA
	Terms of Use
	Sitemap

 Copyright © 2024 StudyDaddy.com

 Worbert Limited - All right reserved.

 20 Christou Tsiarta Elma 2, 22, 1077, Nicosia, Cyprus

