

Statistics for People Who *(Think They)* Hate Statistics

Neil J. Salkind

Chapter 3 ☺ ☺ ☺ ☺
Viva La Différence:
Understanding Variability

What You Will Learn in Chapter 3

- Understanding the value of variability as a descriptive tool
- Computing the range
- Computing the standard deviation
- Computing the variance
- Understanding what the standard deviation and variance have in common and how they are different

Why Understanding Variability Is Important

- *Variability* reflects how scores differ from one another.
- Also called *spread* or *dispersion*

Measures of Variability

- Three measures of variability are commonly used to reflect the degree of variability, including range, standard deviation, and variance.
- Typically report the average and the variability together to describe a distribution

Computing the Range

- Range is the most general estimate of variability
- There are two types of range, although the most commonly used is the exclusive range.

Exclusive Range

- General formula for range
- Also known as the *exclusive range*
- $\text{Range} = h - l$
- Where h is the highest score, and l is the lowest score

Inclusive Range

- Inclusive Range = $h - l + 1$
- This type of range is less commonly seen.
- Where h is the highest score, and l is the lowest score

Computing Standard Deviation

- Most frequently used measure of variability
- $SD = s$ = represents the average amount of variability in a set of scores

$$s = \sqrt{\frac{\sum(X - \bar{X})^2}{n - 1}}$$

Important Symbols

- s = standard deviation
- Σ = sigma, which tells you to find the sum of what follows it
- X = each individual score
- \bar{X} = X -bar = mean of all of the scores in the sample
- n = sample size

Why $n - 1$?

- Standard deviation is an estimate of the POPULATION standard deviation.
- To make it an *unbiased estimate*, you must subtract 1 from n .
- This artificially inflates the SD (it makes it bigger) because it makes the denominator smaller.

Things to Remember . . .

- Standard deviation is computed as the average distance from the mean.
- The larger the standard deviation, the more spread out the values are.
- Like the mean, the standard deviation is sensitive to extreme scores.
- If $s = 0$, then there is no variability among scores, and the scores are essentially identical in value.

Computing Variance

- Variance = standard deviation squared

$$s^2 = \frac{\sum (X - \bar{X})^2}{n-1}$$

- If you take the standard deviation and never complete the last step (taking the square root), you have the variation.

Standard Deviation or Variance

- While the formulas are quite similar, the two are also quite different.
- Standard deviation is stated in original units.
- Variance is stated in units that are squared.

Using the Computer to Compute

Figure 3.1 SPSS Output for the Variable Reaction Time

Statistics		
ReactionTime		
N	Valid	30
	Missing	0
	Std. Deviation	.70255
	Variance	.494
	Range	2.60

Understanding and Interpreting

Figure 3.2 Output for the Variables Math_Score and Reading_Score

Statistics		
	Math_Score	Reading_Score
N	30	30
Valid	30	30
Missing	0	0
Std. Deviation	12.357	18.700
Variance	152.700	349.689
Range	43	76

Real-World Stats

- Stapelberg and colleagues looked at variability in heart rate as it related to coronary heart disease.
- They found decreased heart rate variability in both depressive disorders and coronary heart disease.
- Researchers think that both diseases disrupt control feedback loops that help the heart function efficiently.