Übungsblatt 10 – Tutorien in der 29. Kalenderwoche

Name Matrikelnr. Studiengang

Aufgabe 10.1 (Hausaufgabe, 4 Punkte)

Kreuzen Sie an, ob die folgenden Aussagen wahr (w) oder falsch (f) sind. Für jedes richtig gesetzte Kreuz gibt es 1/2 Punkt, für jedes falsch gesetzte Kreuz wird 1/2 Punkt abgezogen. Eine negative Gesamtpunktzahl wird als 0 Punkte gewertet.

Kreuzen Sie die Terme $f(x_1, x_2)$ als »richtig«, an, durch die eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ definiert wird, deren Taylorpolynom 1. Grades in (0,0) durch $\mathcal{T}^1_{f,(0,0)}(x_1,x_2)=1+x_1$ gegeben wird.

w f

- a) $f(x_1, x_2) = e^{x_1}$
- b) $f(x_1, x_2) = e^{x_1} \sin(x_2)$
- c) $f(x_1, x_2) = \frac{1}{2}x_1^2 + x_2$
- d) $f(x_1, x_2) = 1 + \sin(x_1) + \sin(x_2)$
- e) $f(x_1, x_2) = e^{x_1} \cos(x_2)$
- f) $f(x_1, x_2) = \sin(x_1) + \cos(x_2)$
- g) $f(x_1, x_2) = 1 + x_1$
- h) $f(x_1, x_2) = 1 + x_1 x_2^2$

Aufgabe 10.2 (Tutorium – keine Abgabe)

»Taylor-Polynome«

Bestimmen Sie das Taylor-Polynom zweiter Ordnung der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = (2x - 3y)\sin(3x - 2y)$

zum Entwicklungspunkt $\vec{x} = \vec{0}$.

Aufgabe 10.3 (Tutorium – keine Abgabe)

»Notwendige Bedingung für Extremierer«

Es sei $\Omega \subset V$ offen, und es sei $f \in \mathcal{C}^2(\Omega)$. Wenn $x \in \Omega$ ein lokaler Minimierer von f ist, dann ist die Bilinearform $f''(x) : V \times V \to \mathbb{R}$ positiv semidefinit.

Hinweis: Für $v \in V$ und geeignetes $\varepsilon > 0$ betrachte man die Hilfsfunktion

$$\varphi:(-\varepsilon,\varepsilon)\to\mathbb{R}$$
, $\varphi(t):=f(x+tv)$

im Punkt t = 0.

Aufgabe 10.4 (Tutorium – keine Abgabe)

»Kritische Punkte und ihre Klassifizierung«

Klassifizieren Sie alle kritischen Punkte der beiden folgenden Funktionen.

a)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) := (x^2 + y^2)e^{-x^2 - y^2}$, *Hinweis:* Die Menge der kritischen Punkte von f ist $\mathbb{S}^1 \cup \{(0,0)\}$.

b)
$$g: \mathbb{R}^2 \to \mathbb{R}$$
, $g(x,y) := (4x^2 + y^2) \mathrm{e}^{-x^2 - 4y^2}$
Hinweis: Die Menge der kritischen Punkte von g ist $\{(0,0), (\pm 1,0), (0,\pm 1/2)\}$.

Aufgabe 10.5 (Tutorium - keine Abgabe)

»Kettenregel«

Seien $f: \mathbb{R}^3 \to \mathbb{R}^3$ und $g: \mathbb{R}^3 \to \mathbb{R}^2$ gegeben durch

$$f(r, \theta, \varphi) = \begin{pmatrix} r \cos \theta \cos \varphi \\ r \cos \theta \sin \varphi \\ r \sin \theta \end{pmatrix}, \qquad g(x, y, z) = \begin{pmatrix} x^2 + 2yz \\ z \ln^2(x^2 + 1) \end{pmatrix}.$$

- a) Bestimmen Sie die Jacobi-Matrizen $\partial f(r, \vartheta, \varphi)$ und $\partial g(x, y, z)$ von f und von g.
- b) Es sei

$$h: \mathbb{R}^3 \to \mathbb{R}^2$$
, $h(r, \vartheta, \varphi) := g(f(r, \vartheta, \varphi))$.

Bestimmen Sie die Jacobi-Matrix $\partial h(2, \pi/4, \pi/2)$ von h an der Stelle $(2, \pi/4, \pi/2)$.