\#1:
(1 point) The volume of the solid obtained by rotating the region bounded by

$$
y=x^{2}, \quad y=3 x
$$

about the line $x=3$ can be computed using the method of washers via an integral

$$
V=\int_{a}^{b}
$$

with limits of integration $a=$ \square and $b=$ \square

The volume of this solid can also be computed using cylindrical shells via an integral

$$
V=\int_{\alpha}^{\beta} \square \square \square
$$

with limits of integration $\alpha=\square$ and $\beta=\square$.
\#2:
(1 point) Find the area of the surface obtained by rotating the curve $y=\sqrt[3]{x}$ about y-axis for $1 \leq y \leq 4$.
Area: \square
\#3:
Find the work done (in Joules) in pushing a car a distance of 8 meters while exerting a constant force of 900 N .
\square
\#4:
(1 point) A cyllindrical tank with a diameter of 8 meters is 5 meters tall. Suppose the tank is filled to 4 meters with an oil that has a weight-density of 25 Newtons per cubic meter. Calculate the work required to pump the oil out from 2 meters above the tank.
\square
\#5:
(1 point) Point-masses m_{i} are located on the x-axis as follows. Answer the following questions.

Point-mass mass m_{i}	position x_{i}	
m_{1}	50	4
m_{2}	40	7
m_{3}	30	0.5
m_{4}	20	-6

1. Find the moment M of the system.

Answer: $M=$
2. Find the center of mass \bar{x} of the system.

Answer: $\bar{x}=$

