,	,	4	
I	Ľ	1	٠.

#1:	
(1 point) The	volume of the solid obtained by rotating the region bounded by
	$y = x^2, \qquad y = 3x,$
about the line	$ex = 3$ can be computed using the method of washers via an integral $V = \int_a^b $
with limits of	integration $a=igcap and b=igcap .$
The volume of	of this solid can also be computed using cylindrical shells via an integral
	$V = \int_{\alpha}^{\beta}$? \updownarrow
with limits of	integration $lpha=$ and $eta=$.
Area:	the area of the surface obtained by rotating the curve $y = \sqrt[3]{x}$ about y -axis for $1 \le y \le 4$.
3:	
Find the work 900 N.	done (in Joules) in pushing a car a distance of 8 meters while exerting a constant force of
Work done =	Joules
4:	
meters with ar	indrical tank with a diameter of 8 meters is 5 meters tall. Suppose the tank is filled to 4 noil that has a weight-density of 25 Newtons per cubic meter. Calculate the work required to but from 2 meters above the tank.
	Joules

(1 point) Point-masses m_i are located on the x-axis as follows. Answer the following questions.

Point-mass	mass m_i	position x_i
m_1	50	4
m_2	40	7
m_3	30	0.5
m_4	20	-6

1. Find the moment M of the system.	
Answer: $M =$	
2. Find the center of mass \overline{x} of the system Answer: $\overline{x} = \begin{bmatrix} x & y \\ y & z \end{bmatrix}$	1.