Math 1430 - Exam 3 (TaKe-Home due 11/24/20)

Answer ALL 3 questions
You must show all your work to receive full credit.
Please answer each question on a new page.

1. The production of a chemical satisfies the following differential equation

$$
\frac{d P}{d t}=\frac{20}{(1+4 t)^{2}}
$$

where t is time in days and P is the amount in moles.
(a) Use integration by substitution to find the solution, $P(t)$, starting from the initial condition $P(0)=0$.
(b) Sketch the rate of change $\left(\frac{d P}{d t}\right)$ and the solution.
(c) What happens to $P(t)$ as $t \rightarrow \infty$?
2. (a) An ecologist samples the density of a particular plant species along a 1 km transect and obtains the following data:

Distance (m)	Density (individual plants/m)
0	21
200	13
400	15
600	18
800	7
1000	4

Determine the left-hand and right-hand estimates (Riemann sums) for the total number of individual plants along the 1 km transect.
(b) Find the exact (absolute) area under the curve of the following function

$$
s(x)=(x-2)(x+1)
$$

between $x=1$ and $x=4$.
3. An outbreak of a novel infectious disease is initially growing at a rate of

$$
f(t)=1.5 e^{0.12 t}
$$

new cases per day (where t is time in days).
(a) Evaluate a definite integral to find the number of new cases that occur during the first 2 weeks.
(b) What's the average number of daily new cases in the first 2 weeks?
(c) If the rate was initially given by

$$
g(t)=1.5+0.12 t
$$

new cases per day (where t is time in days), how many fewer cases would occur during the first 2 weeks?

