COMPSCI 230 Computer Systems Principles
Math Bot

Overview

This assignment will give you the opportunity to write a computer networking client that will connect to a
remote server and interact with it. You will be writing this assignment in the C programming language. To
summarize, the skills that you will build are:

e Network System Calls: You will be using system calls in order to communicate to the network.
These are special functions that act as an API to the kernel and the operating system. You should
take a look at this post to see a list of network system calls that are used in building networked
applications. Note, you will not be using all of these, but rather a subset of them. In addition,
along with these system calls you will need to become acquainted with the various structures that
are used as parameters and return values for these system calls.

e Networking: This assignment will use a network socket, which is a special file descriptor that
allows you to interface the networking stack. As explained in class, computer networks are
organized in layers. The sockets we will be using here will allow you to interact with the transport
layer of the stack. More specifically, you will be using TCP stream sockets.

For help with this assignment we recommend that you review the course material as well as read the Unix
Socket Tutorial to better understand the system calls and structures used in Unix network programming.

Source Files and Compilation

You are not provided any starter code with this project. Because we are using an autograder to score
your work, you must, however, provide all code that you write in a single C source file called client.c. In
fact, this is the only file you need to submit to Gradescope! You do not need to submit a Makefile for this
project or a README.txt. The autograder will use gcc to compile your submitted C file, so make sure it
compiles in your vagrant environment before submitting.

Details and Objective

You will implement a network client that will communicate to a remote server in the C programming
language. The server implements a simple protocol that requires your client to send your
netid@umass.edu email. After you do this then the server will respond to your client with a series of
simple math problems that your client will need to solve (how you solve the math problems is up to you).
The steps are outlined as follows:

Your client will be expected to conduct the following procedure:

Step 1: Open a TCP stream socket

Step 2: Connect to the remote server on the specified port number

Step 3: Send your SPIRE ID to the server in the following format: NETID@umass.edu

Step 4: Receive the first math problem

Step 5: Send the CORRECT solution to the server (Server will drop connection if it is wrong)

Step 6: Continue steps 4 and 5 for a random amount of times (No less than 300, but no more
than 2000)

e Step 7: Once step 6 is completed, you will receive a 64-byte string (flag) that is unique to your
NetID. Once you capture the flag you know you have implemented your client correctly.


http://linasm.sourceforge.net/docs/syscalls/network.php
https://www.tutorialspoint.com/unix_sockets/socket_structures.htm
https://en.wikipedia.org/wiki/Network_socket
https://www.tutorialspoint.com/unix_sockets/index.htm
https://www.tutorialspoint.com/unix_sockets/index.htm

Socket Requirements

Your client is expected to be written in C, not a high-level language such as python (no matter how
tempting that might be). In order to write a networking program in C, you must use various system calls
provided by the socket API. In particular, the system calls you might find useful are:

socket(int domain, int type, int protocol);

ssize_t send(int socket, const void * buffer, size_t length, int flags);

ssize_t recv(int socket, void * buffer, size_t length, int flags);

ssize_t connect(int socket, const struct sockaddr *address, socklen_t address_len);
int close(int fildes);

If you are unfamiliar with any of these, you should read up on it, review the course material and example
code, look at the man pages. Reviewing the man pages will be very helpful during the completion of this
assignment. Please do not neglect this valuable resource. Note: These system calls are functions, and
just like any function they can possibly return errors. Be sure to check the return values of these functions
to make your client more robust.

To make it a little easier on you we provide you with the minimum list of header files that you need to
include in your client in order to produce a working client:

Notice that connect takes as an argument: struct sockaddr *address. This is one of the challenges
of the assignment. You will have to populate the struct with the IP address and port number as well as
other information. An extremely helpful link for this is found in our code example with slides. Please read
that entire code closely! It is very short, but dense. Hint: The network requires big endian format, so you
will have to convert between the two. Helpful functions for this are htons and inet_pton. They do have
man pages available to anyone with a Linux (vagrant) or Mac distribution!

Protocol Requirements

To capture the flag from the math bot server you must combine your understanding of the socket API
functions and an application-layer protocol known as math speak which is as follows:

When you first connect to the server you must identify yourself. In particular, you must send the following
string:

€s230 HELLO <NETID>@umass.edu\n

This string must be exactly as we describe above - network protocols are very specific. You must replace
<NETID> with your UMass NetID. By sending the identification string it will initiate the math bot server to
start sending you math problems. You will immediately receive a "status" message with the following
format:


https://www.binarytides.com/socket-programming-c-linux-tutorial/
https://drive.google.com/file/d/1O8qxXgXj-55ileWjBE7OYXk4VVxJc2aa/view?usp=sharing
https://docs.google.com/presentation/d/1vp5AFcDnVvrXaddouIWtne3fLbEi3NSQONxt5baeq6o/edit

€s230 STATUS NUM OP NUM\n

This status message includes a simple arithmetic operation. An example of an actual message is:

€s230 STATUS 505 * 700\n

You will need to implement functionality in your client that will compute the math problem provided in the
server's status message. After you do that you need to send a response back to the math bot server that
is formatted like this:

€s230 <ANSWER>\n

You must replace <ANSWER> with the answer to the math problem. Here is an example:

€s230 353500\n

With your response back to the server, the server will then repeatedly send you hundreds of math
problems that your client must solve. Your client will need to solve each of the status math problems until
you receive the response with the flag:

cs230 <FLAG> BYE\n

The <FLAG> is a long hash value. Here is an example of the final message you will receive from the
server before it disconnects from your client:

€s230 7c5ee45183d65715148fd4bbabb6615128ec32699164980be7b8b451fd9acOc3 BYE\n

If you are able to "capture the flag" you have completed this assignment successfully. You still need to
submit it to Gradescope though.

Program Requirements
Your client program must accept the following command line arguments in this order:
1. Identification

2. Port
3. Host IP address

The first argument (Identification) must be a UMass email address of the form "NetID@umass.edu". The
port and host IP address are as they are defined by the socket API.

We will be running a test server at address 128.119.243.147 on port 27993. You are welcome to test your
client by running it like so:

$ ./client netid@umass.edu 27993 128.119.243.147
And see if you can capture your flag! Note: it took 22 seconds for our solution client to complete over a 5

Mbps connection. If it seems to take a while, it may not be wrong. If it never ends you should then add
debugging output to see where it is getting blocked.



Hints and Suggestions

Here is a list of hints and suggestions that will help you in completing this assignment:

1.

2.

Print the messages that are being sent and returned from the client and server respectively to see
what you are sending to the server and what the server is sending back to you.

Make sure the messages you send to the server are exactly as stated above. Do not add any
extra spaces or additional newlines (just the one that is at the end of the message) - any extra
bytes will cause a failure in communication.

Figure out how to extract the math problems, evaluate them, and send back the correct result.
Pay careful attention to division - we expect the result to be truncated. For example, if your client
is asked to solve "200 / 3" you must respond with "66" as the result, not "66.66666" or "67".
Figure out how you can identify when your client is done solving math problems.

Make sure your compiled client accepts the command line arguments exactly as we described
above. If it does not, the autograder on Gradescope will give you a 0.

Print the final message so you can see the flag and verify that you have implemented the client
properly. Do not forget to submit to Gradescope!

Grading Breakdown

1.

Gradescope Submission and Autograder (1000 points)

NOTE: There is no video for this last submission!

Submitting Your Solution

This assignment is a bit different than the past assignments. You will need to submit only the client.c
file mentioned above to Gradescope. The autograder will try to compile your C code and it will then run a
local server (the same as the public server) to see if your client passes the tests. The tests are simple: (1)
connect to the server, (2) solve the math problems, and (3) capture the flag. If you are able to do this
successfully you will successfully complete this assignment. The total number of points for this project is
1000 (it doesn't mean that it has more weight than other projects).



