ME 50105 Hybrid and Electric Transportation <u>Home Work Set 4</u>

1. Consider a hybrid electric drivetrain with the following parameters:

Description	Requirements
Vehicle mass	1800kg
Driver/one passenger	1761b/80kg
Rolling resistance coefficient, C ₀	0.01
Wheel radius, r _{wh}	0.3305 m
Aerodynamic drag coefficient, C _{AD}	0.25
Frontal area, A_F	2.5m ²
0-60mi/h	8.0 s
5070 mi/h	6.3 s
Sustained cruising speed	55 mi/h at 7% grade
Sustained cruising speed	70 mi/h at 0.5% grade
Zero emission range	5mi at 40mi/h

Additional parameters are: $\rho_{air} = 1.16 \text{ kg/m}^3$, $g = 9.8 \text{ m/s}^2$, maximum cruising speed = 150 kph, transmission efficiency = 0.92, motor & generator efficiency = 0.95, and $f_s = 0$. C_0 is same as f_0 .

- i. Design a series hybrid vehicle powertrain based on the above performance requirements (i.e. specify engine and motor power ratings, transmission ratio, battery power rating and energy capacity).
- ii. Use FTP 75 urban and FTP 75 highway drive cycles and the software ADVISOR 3.0 to verify your design via simulation.
- iii. Provide the following:
 - a. Plot traction motor torque/power vs speed;
 - b. Plot acceleration time vs vehicle speed;
 - c. Plot tractive effort and resistance vs vehicle speed at various grades;
 - d. Plot gradeability vs vehicle speed;
 - e. Plot engine power vs. vehicle steady state speed on flat and 5% grade;
 - f. Plot engine torque vs speed with BSFC contour for both urban and highway cycles.
- iv. Also plot the following variable for both urban and highway cycles:
 - a. vehicle power
 - b. motor power
 - c. engine power
 - d. battery power, and
 - e. battery SoC.
- 2. For the vehicle parameters and performance requirements in problem 1,
 - i. Design a parallel HEV drivetrain providing
 - (a) Engine power,
 - (b) Transmission ratio,

- (c) Electric motor power,
- (d) Battery power rating, and
- (e) Battery energy capacity.
- ii. Use FTP 75 urban and FTP 75 highway drive cycles and the software ADVISOR 3.0 to verify your design via simulation.
- iii. Provide the following plots:
 - (a) Engine power vs. vehicle steady state speed on flat and 5% grade;
 - (b) Engine torque vs speed with BSFC contour for both urban and highway cycles;
 - (c) Traction motor torque/power vs speed;
 - (d) Acceleration time vs vehicle speed;
 - (e) Tractive effort vs vehicle speed at various grades;
 - (f) Energies drawn from battery and engine vs vehicle speed during acceleration.
- iv. Also plot the following variables for both urban and highway cycles:
 - (a) vehicle power,
 - (b) motor power,
 - (c) engine power,
 - (d) battery power, and
 - (e) battery SoC.