
Function to read the maze from filename

def readMaze(filename):

 f = open(filename, "r")

 if f.mode == "r":

 walls = [] ## defines locations of list walls as (row, col)

 foods = [] ## defines locations of list foods as (row, col)

 pacmanPos = 0 ## define pacman position as tuple (row, col)

 y = 10

 while True:

 str = f.readline() ## read one line from the file

 if str=="": break ## stop loop if an empty (or end of file)

string is reached.

 x = 10

 for k in str:

 if k == '*': ## star indicate a wall

 walls.append((x, y)) # append (row, col) to walls list

 if k == '.': ## period indicates a food

 foods.append((x, y)) # append (row, col) to foods list

 if k == 'P': ## letter P indicates player

 pacmanPos = (x, y) # set pacman position to (row, col)

 x += Problem.xStep

 y += Problem.yStep

 Problem.xMax = x # save row in the problem static data class f

later use

 Problem.yMax = y # save col in the problem static data class f

later use

 Problem.walls = walls # save walls in the problem static data class for

later use

 return Problem(foods, pacmanPos) # declare class Problem with foods and

pacman position

class Problem():

 walls = 0

 xMax = 0

 yMax = 0

 xStep = 40

 yStep = 40

 directions = {'u': (0, -yStep), 'd': (0, yStep), 'l': (-xStep, 0), 'r': (xSte

0)} # direction as dictionary

 def __init__(self, foods, pacmanPos):

 self.foods = foods

 self.pacmanPos = pacmanPos

 def isGoal (self, currentPos): ## goal is true when current position of pacm

reaches the food

 if currentPos == self.foods[0]: return True

 return False

 def startState (self): ## start state is pacman position

 return self.pacmanPos

 def legalActions (self, currentPos): ## return legal actions for the curre

position

 x, y = currentPos

 actions = []

 for action in Problem.directions.keys(): ## select an action: u, d, l, r

 dx, dy = Problem.directions[action]

 newPos = (x + dx, y + dy) # compute new position for that action

 x1, y1 = newPos

 # if new position is out of the maze boundaries, then skip that new

position

 if x1 < 10 or y1 > Problem.yMax: continue

 if y1 < 10 or y1 > Problem.yMax: continue

 # if the new position is in the walls list, then skip that new positi

 if newPos in Problem.walls: continue

 # save the action in the actions list.

 actions.append(action)

 return actions

 # method to compute the next position after applying the action on the curren

position

 def successor (self, action, currentPos):

 dx, dy = Problem.directions[action]

 x, y = currentPos

 newPos = (x + dx, y + dy)

 return newPos

