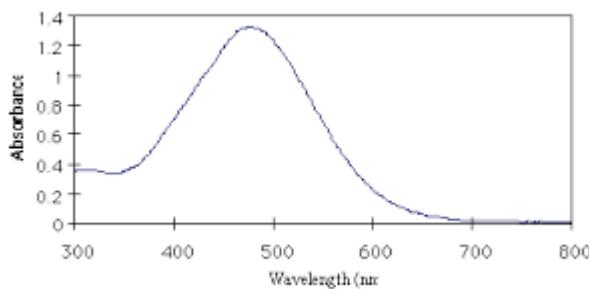


Chemical Equilibrium: Determination of K_f for the iron-thiocyanate complex ion


$$K_f = \frac{[\text{FeSCN}^{2+}]}{[\text{Fe}^{3+}][\text{SCN}^-]}$$

$[\text{FeSCN}^{2+}]$, obtain from the absorption of visible light

Beer's Law, $A = \epsilon lc$ absorbance = (molar absorptivity)(path length)(concentration)

$A \propto c$ at λ of maximum absorption

note: at appropriate λ , reactants do not absorb light

need A for a known $[\text{FeSCN}^{2+}]$ standard solution

all trials, use 2.0×10^{-4} M KSCN

trial 1: use a large excess of Fe^{3+} (0.20 M)

Le Chatelier's principle: shift the equilibrium to the right, assume all the SCN^- reacts, so $[\text{SCN}^-] = [\text{FeSCN}^{2+}]$ (note dilution for concentrations)

trials 2-6

trial 1

$$[\text{FeSCN}^{2+}]_n = [\text{FeSCN}^{2+}]_1 \times \frac{A_n}{A_1} \quad \text{other trials}$$

A_1 trial 1 (test tube 1)

$$[\text{Fe}^{3+}]_{\text{equil}} = [\text{Fe}^{3+}]_{\text{initial}} - [\text{FeSCN}^{2+}]_n$$
$$[\text{SCN}^-]_{\text{equil}} = [\text{SCN}^-]_{\text{initial}} - [\text{FeSCN}^{2+}]_n \quad \text{note dilution}$$

calculate K_f for trials 2-6, get the average K_f

Procedure:

add 5 mL of 2.0×10^{-4} M KSCN to each of the six test tubes

$\text{Fe}(\text{NO}_3)_3$ solutions, use a disposable pipet and graduated cylinder

Note, above reactants already in 0.50 M HNO_3

test tube #1: add 5 mL of 0.20 M $\text{Fe}(\text{NO}_3)_3$, large excess, standard solution

test tubes 2-6:

add 10.0 mL of 0.20 M $\text{Fe}(\text{NO}_3)_3$ to the 25 mL graduated cylinder,
add deionized water to get 25 mL of solution (0.080 M Fe^{3+})

add 5.0 mL of this solution (0.080 M Fe^{3+}) to test tube #2

discard all but 10.0 mL of the rest of the solution in the graduated cylinder

to the 10.0 mL of remaining solution, add deionized water to get 25.0 mL of solution (0.032 M Fe^{3+})

add 5.0 mL of this solution to test tube #3

repeat procedure for test tubes 4, 5, and 6.

Ocean Optics spectrophotometer

use 1 cuvette only for all the solutions (place in holder the same way each time (V mark))

wipe cuvette with chemwipe (no fingerprints)

first calibrate the spectrophotometer with a blank solution (0.50 M HNO_3)

do not skip warm up set for the lamp

scan all six solutions from 390-700 nm (change scanning range)

want to record the absorption at the top of the curve (record both the wavelength and the absorption value),
try to be consistent in recording the absorption for each solution at approximately the same maximum
wavelength value

example:

test tube #1: 5.0 mL 2.0×10^{-4} M KSCN mix together
5.0 mL 0.2 M $\text{Fe}(\text{NO}_3)_3$

$[\text{KSCN}] = 1.0 \times 10^{-4}$
 $[\text{Fe}^{3+}] = 0.10 \text{ M}$ remember dilution

$[\text{FeSCN}^{2+}] = 1.0 \times 10^{-4}$

at λ_{max} , $A = 0.470$ for the standard

test tube #2: 5.0 mL 2.0×10^{-4} KSCN
5.0 mL 0.080 M Fe^{3+} mix together

$[\text{SCN}^-] = 1.0 \times 10^{-4}$
 $[\text{Fe}^{3+}] = 0.040 \text{ M}$ initial concentrations (after dilution)

$[\text{FeSCN}^{2+}]_{\text{unknown}} = [\text{FeSCN}^{2+}]_{\text{standard}} \times \frac{A_{\text{unknown}}}{A_{\text{standard}}}$

$$[\text{FeSCN}^{2+}] = 1.0 \times 10^{-4} \times 0.426/0.470 = 9.06 \times 10^{-5} \text{ M}$$

$$[\text{Fe}^{3+}]_{\text{equil}} = 0.040 - 9.06 \times 10^{-5} = 0.040$$

$$[\text{SCN}^-]_{\text{equil}} = 1.0 \times 10^{-4} - 9.06 \times 10^{-5} = 9.4 \times 10^{-6}$$

$$K_f = \frac{[\text{FeSCN}^{2+}]}{[\text{Fe}^{3+}][\text{SCN}^-]} = \frac{9.06 \times 10^{-5}}{(0.040)(9.4 \times 10^{-6})} = 241$$

K_f experimental data:

Test Tube Absorbance

1. Standard 0.452

2. 0.434

3. 0.398

4. 0.298

5. 0.185

6. 0.096

Calculations:

1. Determine the initial concentrations of Fe^{3+} and SCN^- upon mixing the solutions together. Remember that there is a dilution factor present for the calculation of the initial concentrations as the solutions were made.

Trial (Test Tube)	$[\text{Fe}^{3+}]$ initial	$[\text{SCN}^-]$ initial
2		
3		
4		
5		
6		

2. Determine the concentration of FeSCN^{2+} in the various solutions using the following equation:

$$[\text{FeSCN}^{2+}]_{\text{unknown}} = [\text{FeSCN}^{2+}]_{\text{standard}} \times \frac{\text{absorbance unknown}}{\text{absorbance standard}}$$

where standard refers to the standard solution (test tube #1) and unknown refers to the other 5 test tubes. For test tube #1 ($[\text{FeSCN}^{2+}]_{\text{standard}}$), assume that all the initial thiocyanate ion (SCN^-) has been converted to the iron-thiocyanate complex ion (FeSCN^{2+}).

3. Calculate the concentration of Fe^{3+} and SCN^- present at equilibrium in tubes 2 - 6 by subtracting the amount reacted based on the complex ion formed from the initial values in each test tube.

$$[\text{Fe}^{3+}]_{\text{equil}} = [\text{Fe}^{3+}]_{\text{initial}} - [\text{FeSCN}^{2+}]$$

$$[\text{SCN}^-]_{\text{equil}} = [\text{SCN}^-]_{\text{initial}} - [\text{FeSCN}^{2+}]$$

Equilibrium concentrations

Trial (test tube)	$[\text{FeSCN}^{2+}]$ (M)	$[\text{Fe}^{3+}]$ (M)	$[\text{SCN}^-]$ (M)
2			
3			
4			
5			
6			

3. Calculate K_f for trials 2 - 6, and calculate the average K_f for the complex ion equilibrium.

K_f

Trial 2 _____

Trial 3 _____

Trial 4 _____ Average K_f = _____

Trial 5 _____

Trial 6 _____

Show the K_f calculation for one of the trials.