@ STUDYDADDY

Get Homework Help
From Expert Tutor



https://studydaddy.com/?utm_source=pdf

You are asked to develop a replicator (client) that distributes a large job over a number of computers (a server group) on a single switched LAN (our Linux lab). In this
assignment, a large (simulation) job can be divided into a mumber of small jobs, each of which can be assigned to oue machine from the server group for execution. The
execution results of the small jobs can be merged once all of them successfully terminate.

System Architecture:

client server]  server2  serverd
I | ] |
| | 1 1
| wuN | | |

e e B
The client and servers are running Network File System (NFS) so that user files are visible at SHOME directory. You may want to set up the following environment:
« SHOME replicate hosts: a lst of (server) hostnames which participate in the simulation. There is no reason why your implementation cannot support up to 10

servers
« SHOME replicate_out: the directory that stores the small job execution resuit

T emlasiepeogomn oSk (amcy) e poidi T Sl g, Yo ot mad 1w o com mhet ype Kok dow d schinly 188 commping
intensive (CPU f “hyper_link" are job 1000000 999 1 2 2 100, where the job number determines the number of
small jobs in your simulation. To allow mecne:nonm-nmmm,on-wupmmnw start, end. and step. For example. the command (from the client)
“hyper_link 1 100 1 1000000 999 1 2 2 100" yields 100 small jobs with the jobs starting from 1 to 100. Each small job produces a screen output (see example below) at
the end (if finished successfully). Your code needs to redirect the output 10 a file and save it in SHOME replicate_out. For example (on the server side),

Jhyper_link 1 1000000 999 1 22 100
will produce a screen output looks like (it takes approximately 2 misutes on spirit):
1.125193¢+002

Requirements:

1. The communications between the replicator and servers are achieved through pr calls in the client-
2. Auser interface is required for the replicator to control the server. A command line interface will be acceptable. A (working) graphic user interface (GUI) will
impress the instructor and earn up 1o 20 bonus credits. Your client interface should at least support the following operations.
start a large job. For example: hyper_link 1 100 1 1000000 999 1 2 2 100 (start 100 small jobs with job mumber starting from 1 10 100)
show the current CPU load of a certain server (i the server is active),
show the curreat server status (active of inactive).
stop a certain server.
restart a certain server
For those who are going to implement GUL you need to create an icon for each server, and show the server status in the real time, e.g., the CPU load (with
the mark of hi-threshold), active inactive. efc
© The hi-threshold and lo-threshold can be set to m pre-determined values (as long as they are reasonable). Alternatively, you will impress the instructor by
the run. If that s the case, you have to provide two extra commands that set the values
3 mnph::mdhnmmktmdlmll)obsmsm&fnu_\ finished.
© Ifa server crashes (or not respoasive), the running job (not finished yet) will be killed and rescheduled (at a certain time per your design) for execution.
© Ifa server CPU load exceed the preset threshold (the higher threshold), the replicator stops the server (and therefore kills the job).
© The replicate should keep polling the CPU load of the stopped server. Once the load becomes lower than the lower threshold (a preset value), the server
should be reactivated to run the jobs.
© The replicator can also stop any server (through user interface) if needed. Once happened. the unfinished job will be killed.
o Ifa job terminates abormally (e.g.. being killed). the replicator has to reschedule the job execution later
4. Makefile: you need to provide a Makefile that allows the instructor to compile your code by simply typing "make™
S. Write-up: you are required to write a README document (in txt format) that describes your project design detail and the execution sequence (with the commands).
In particular, please explicitly state which part. if there is any, does not work and the possible reasons why that module does not work. For those working modules,
please give a brief (in short) sample output.

Hints:

RPC programming: a brief (Sun) RPC programming introduction is given in the class.
CPU load: please check /procloadavg for the CPU load information in Linux.
Linux signal: the signal mechnism must be used to control the simulation execution at the servers

1
3




@ STUDYDADDY

Get Homework Help
From Expert Tutor



https://studydaddy.com/?utm_source=pdf

