
https://studydaddy.com/?utm_source=pdf


COMP 2150 - Spring 2021

Project: Too Much to Watch

Total Points: 100

Due: Friday, Apr. 30, by 2359 CDT

I’ve provided a data file on eCourseware with all of Netflix’s streaming o↵erings as of early 20211.
The file is in CSV (comma-separated values) format and can be opened in either a spreadsheet or a
text editor to view its contents. The first line of the file includes information on what each column
represents. Each subsequent line is called a record and contains info about a single movie or series.

Each record is divided into fields, which are separated by commas (thus the name “comma-
separated values”). The fields used in this project are:

• Title

• Director

• Cast

• Country

1Source: Shivam Bansal, https://www.kaggle.com/shivamb/netflix-shows

1



• Release year

• Rating (G, PG, TV-MA, etc.)

• Duration (runtime in minutes for a movie, or number of seasons for a series)

• Genre (action, sci-fi, etc. — the file calls this listed in)

• Description

Note that some fields are absent from some records; these are indicated with an empty string
between the separating commas. Fields that themselves contain commas are placed between double
quotes, to prevent confusion with the commas being used to separate fields from one another.
Double quotes that are meant to be included as part of a field are represented as two consecutive
double quotes (""). For example, consider line 782 of the file:

s781,Movie,Beak & Brain: Genius Birds From Down Under,"Volker Arzt, Angelika

Sigl",,Germany,"March 1, 2017",2013,TV-G,52 min,"Documentaries, International

Movies","Whoever came up with the term ""bird brain"" never met these feathered

thinkers, who use their claws and beaks to solve puzzles, make tools and more."

Here, the director field is

Volker Arzt, Angelika Sigl

The cast field is empty (presumably the program stars the birds), and the description field is

Whoever came up with the term "bird brain" never met these feathered thinkers,

who use their claws and beaks to solve puzzles, make tools and more.

Project Specifications

In this project you’ll be writing some software that parses (reads) the data file and allows the user
to apply and remove filters to customize the results. That should make it easier to pick from the
huge selection of options available! For example, the user may want to see a list of all the movies
released in 2000 or later that were directed by Christopher Nolan. This would be expressed using
the following three filters:

1. movie

2. year >= 2000

3. director nolan

The user should be able to add as many filters as s/he desires, and the software should allow
the user to display a list of the media records from the data file that match all the filters. The user
should also be able to remove filters at will. Every time a filter is added or removed, the software
should indicate 1) the currently active filters, and 2) how many items from the data file match all
filters in the filter list.

Page 2 of 7



Your software must support the following filter formats:

• movie - matches any movie

• series - matches any series

• title - matches any title that contains2 a specific string

• director - matches any director that contains a specific string

• cast - matches any cast that contains a specific string

• country - matches any country that contains a specific string

• rating - matches any rating that equals a specific string. Note that unlike the others,
this one should be an exact (ignoring case) match.

• genre - matches any genre that contains a specific string

• Filters that involve the release year. The blank should be a single integer indicating the year.

– year <

– year >

– year <=

– year >=

– year =

• Filters that involve the runtime. The blank should be a single integer indicating the runtime
in minutes. These filters work only for movies; they do not match any series.

– runtime <

– runtime >

– runtime <=

– runtime >=

– runtime =

All matching should be done without regard to case. If a filter is entered that doesn’t fit any of
these formats, the filter should match any media that contains the filter’s text in the title, director,
cast, country, genre, or description.

2An exact match is not necessary. As long as any substring of the title matches the target string, it counts.

Page 3 of 7



Class Design

Your project must include the following classes. I’m purposely a little vague about the class design
to give you some freedom to explore and implement the details as you see fit.

1. (20 points) An abstract Media class, with concrete Movie and Series subclasses. These classes
should be designed to hold the relevant fields mentioned earlier: title, director, cast, country,
release year, rating, duration, genre, description. Include toString methods in both of the
subclasses; each one should return a string indicating the type of media (movie or series) and
all of the instance variables.

2. (30 points) A DataFileParser class that handles reading the provided data file. For each
record in the file, a new Media object (either Movie or Series) should be created and added to
a list of Media objects. This class should include a method that returns the finished list.

3. (25 points) A Filter class that represents a single filter.3 Every time the user adds a filter, a
new Filter object should be created and added to a list. Removing a filter should remove it
from this list. The Filter class should include a method that determines whether or not the
filter matches a specific Media object.

4. (25 points) A client program with a main method to run. Here’s an outline of what the client
program needs to do:

• Read the data file and create a new Media object for each record in the file. Store these
objects in a list (let’s call this masterList).

• Allow the user to add or remove any number of filters. These filters should be stored in a
separate list (let’s call this filterList).

• Each time the user adds a new filter or removes an existing filter, your code should search
the masterList to find only the objects that match all the filters in the filterList. Copy
those objects into another list (let’s call this currentList). Then, you can simply list the
items in the currentList to see which items match all filters.

Other Requirements

• User input should happen only in the client program. Implement input validation on all user
inputs, including exception handling where appropriate. Invalid input should show an error
message and prompt the user to try again. Your software should never crash due to user
input!

• Use Java’s built-in classes (either java.util.ArrayList or java.util.LinkedList) for the
lists of Media objects and the list of Filter objects.

• How you enter filters in the client program is up to you. The version I’ll demonstrate in class
allows the user to type in the filters directly, but if you prefer to write a menu-based system
that’s OK too.

3You might be tempted to store the filters as plain strings, but making a class will allow you to more cleanly
access the separate parts of each filter.

Page 4 of 7



COMP 2150 - Spring 2021 Project Due Friday, Apr. 30, by 2359 CDT

Hints

• The file reading part is not super di�cult, but it is not trivial. Get started on this part early,
since you need it for the rest of the project! You will not be able to just call split(","),
because some of the commas on each line might themselves be part of a CSV field.

• Refer to the String class in the Java API for some helpful methods. You’re welcome to use
any of them in your solution.

• Java does not allow strings to be cast to primitive types. However, you can use the static
method Integer.parseInt to convert a string into an int. If you try passing an argument
that can’t be read as an int, this method throws a NumberFormatException.

Page 5 of 7



COMP 2150 - Spring 2021 Project Due Friday, Apr. 30, by 2359 CDT

Code Guidelines

Points can be deducted for not following these guidelines!

• Most importantly, your code must compile and run. Code that does not compile and run may
receive zero credit, at the TA’s discretion.

• Follow Java capitalization conventions for ClassNames, variableAndMethodNames, and
CONSTANT NAMES.

• Use consistent indentation throughout your code.

• Follow one of these two conventions for curly braces. You can pick either one, but follow it
consistently.

– StyleA {

// stuff here

}

– StyleB

{

// stuff here

}

• Include a reasonable amount of comments in your code. “Reasonable” is somewhat subjective,
but at the very least include:

1. A comment at the top of each class summarizing what it does. Also include your name
(and your teammate’s name, if applicable) in this section.

2. A comment before each method summarizing what it does, its parameters (if any), and
its return value (if any).

3. Comments that indicate the major steps taken by the code. There are generally at least
a few of these per class file.

Page 6 of 7



Page 7 of 7



https://studydaddy.com/?utm_source=pdf

