Olin School of Business, Washington University Stochastic Foundation of Finance (FIN 538)

Thao Vuong

Problem Set 2

Problem 1 Consider the economy in Example 1, Lecture 1 which lasts for three quarters. Similar to Example 5 of Lecture 1, consider a security that pays $d_{t}=\$ 1$ if the economy state in quarter t is G and $d_{t}=\$ 0$ if the economy state in quarter t is B. Define

$$
\begin{aligned}
& X_{1}=d_{1} \\
& X_{2}=d_{1}+d_{2} \\
& X_{3}=d_{1}+d_{2}+d_{3}
\end{aligned}
$$

Note that both $\left(d_{1}, d_{2}, d_{3}\right)$ and $\left(X_{1}, X_{2}, X_{3}\right)$ are stochastic processes.

1. Suppose that the event $\omega=G B G$ is realized at the end of quarter 3 . What are the values for d_{1}, d_{2}, d_{3} and X_{1}, X_{2}, X_{3} ?
2. Describe X_{2} as a map from the sample space Ω (which you found in PS1) into the real line \mathbb{R}. Find the smallest sigma algebra that makes X_{2} a random variable.
3. Suppose that d_{1}, d_{2}, d_{3} are random maps on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Find \mathcal{F}.

Problem 2 Let B_{t} be a Brownian motion.

1. Calculate $\mathbb{E}\left[B_{t} B_{s}\right]$ for $t \geq s$ where B_{t}.
2. Calculate $\operatorname{Var}\left[B_{t}+B_{s}\right]$ for $t \geq s$ where B_{t}.
3. Calculate $\mathbb{E}\left[\left(B_{s}-B_{t}\right)^{4}\right], s>t>0$.
