Olin School of Business, Washington University Stochastic Foundation of Finance (FIN 538)
Thao Vuong

Problem Set 1

Problem (An extension of Example 1 of Lecture 1)
Suppose the economy in Example 1, Lecture 1 lasts for three quarters. Similar to Example 5 of Lecture 1, consider a security that pays $d_{t}=\$ 1$ if the economy state in quarter t is G and $d_{t}=\$ 0$ if the economy state in quarter t is B.

1. What is the sample space Ω ?

Answer: $\Omega=\{G G G, G G B, G B G, G B B, B G G, B G B, B B G, B B B\}$.
2. Following Example 1, find the filtration that corresponds to the σ-algebras \mathcal{F}_{t} at $t=0,1,2,3$.

Answer: $\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{1}=\{\emptyset, \Omega,\{G G G, G G B, G B G, G B B\},\{B G G, B G B, B B G, B B B\}\}, \mathcal{F}_{2}=$ $\{\emptyset, \Omega,\{G G G, G G B\},\{G B G, G B B\},\{B G G, B G B\},\{B B G, B B B\}$, all possible unions of these sets $\}$, $\mathcal{F}_{3}=2^{\Omega}$, where 2^{Ω} is the set of all subsets of Ω.
3. Calculate the probability measure \mathbb{P} that is associated with each σ-algebra \mathcal{F}_{t} above for $t=0,1,2,3$.
Answer:
(a) For $\mathcal{F}_{0}: \mathbb{P}(\emptyset)=0, \mathbb{P}(\Omega)=1$.
(b) For $\mathcal{F}_{1}: \mathbb{P}(\emptyset)=0, \mathbb{P}(\Omega)=1$,

$$
\mathbb{P}(\{G G G, G G B, G B G, G B B\})=q, \mathbb{P}(\{B G G, B G B, B B G, B B B\}\})=1-q
$$

(c) For $\mathcal{F}_{2}: \mathbb{P}(\emptyset)=0, \mathbb{P}(\Omega)=1$,

$$
\begin{gathered}
\mathbb{P}(\{G G G, G G B\})=q^{2}, \mathbb{P}(\{G B G, G B B\})=q(1-q), \\
\mathbb{P}(\{B G G, B G B\}\})=q(1-q), \mathbb{P}(\{B B G, B B B\}\})=(1-q)^{2} \\
\mathbb{P}(\{G G G, G G B, G B G, G B B\})=q^{2}+q(1-q)=q \\
\mathbb{P}(\{G G G, G G B, B G G, B G B\})=q^{2}+q(1-q)=q \\
\mathbb{P}(\{G G G, G G B, B B G, B B B\})=q^{2}+(1-q)^{2}=1-2 q+2 q^{2} \\
\mathbb{P}(\{G B G, G B B, B G G, B G B\})=2 q(1-q) \\
\mathbb{P}(\{G B G, G B B, B B G, B B B\})=q(1-q)+(1-q)^{2}=1-q \\
\mathbb{P}(\{B G G, B G B, B B G, B B B\})=q(1-q)+(1-q)^{2}=1-q
\end{gathered}
$$

(d) For \mathcal{F}_{3} : Similar calculations as above.
4. Consider a security X with date- 3 payoff defined as

$$
X=d_{1}+d_{2}+d_{3}
$$

Let Y be a put option on X with a strike price of $K=2$ and maturity of $T=3$. Recall that the payoff for this put option is $Y=\max (K-X, 0)$.
(a) Describe Y as a map: $Y: \Omega \rightarrow \mathbb{R}$.

Answer:

$$
\begin{gathered}
Y(G G G)=Y(G G B)=Y(G B G)=Y(B G G)=0 \\
Y(B B G)=Y(B G B)=Y(G B B)=1
\end{gathered}
$$

and

$$
Y(B B B)=2
$$

(b) Find the smallest σ-algebra that makes Y a random variable.

Answer: It's the σ-algebra generated by Y :
$\{\emptyset,\{B B B\},\{G B B, B G B, B B G\},\{G G G, G G B, G B G, B G G\},\{B B B, G B B, B G B, B B G\}$, $\{B B B, G G G, G G B, G B G, B G G\},\{G B B, B G B, B B G, G G G, G G B, G B G, B G G\}, \Omega\}$

