Olin School of Business, Washington University Stochastic Foundation of Finance (FIN 538)

Thao Vuong

Problem Set 4

Problem 1 In this problem, you will use the following steps to show that $\operatorname{Var}\left(\int_{0}^{t} C_{s} d B_{s}\right)=$ $\int_{0}^{t} \mathbb{E}\left[C_{s}^{2}\right] d s$ where C_{t} is adapted to the natural filtration associated with the Brownian motion B_{t} :

1. Consider the finite sum $S_{n}=\sum_{i=1}^{n} C_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right)$ so that $\lim _{n \rightarrow \infty} S_{n}=\int_{0}^{t} C_{s} d B_{s}$. Show that

$$
\operatorname{Var}\left(S_{n}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(C_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right)\right)
$$

2. Write

$$
\operatorname{Var}\left(C_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right)\right)=\mathbb{E}\left[\left(C_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right)\right)^{2}\right]-\left(\mathbb{E}\left[C_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right)\right]\right)^{2}
$$

Use the law of iterated expectation to show that $\mathbb{E}\left[C_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right)\right]=0$ and $\mathbb{E}\left[\left(C_{t_{i-1}}\left(B_{t_{i}}-\right.\right.\right.$ $\left.\left.\left.B_{t_{i-1}}\right)\right)^{2}\right]=\mathbb{E}\left[C_{t_{i-1}}^{2}\right]\left(t_{i}-t_{i-1}\right)$.
3. Take the limit when $n \rightarrow \infty$ to conclude that $\operatorname{Var}\left(\int_{0}^{t} C_{s} d B_{s}\right)=\int_{0}^{t} \mathbb{E}\left[C_{s}^{2}\right] d s$.

Problem 2 1. Show that $\operatorname{Var}\left(\int_{0}^{1} B_{s}^{2} d B_{s}\right)=1$.
2. We will now verify that $\operatorname{Var}\left(\int_{0}^{1} B_{s}^{2} d B_{s}\right)=1$ using simulations. Use Excel to generate 100 sample paths of the Brownian motion in the time interval $[0,1]$ by following the following steps:
(a) Partition the interval $[0,1]$ into 100 small intervals each of length $0.01: t_{0}=0, t_{1}=$ $0.01, t_{2}=0.01, \cdots, t_{100}=1$.
(b) For each t_{i}, generate a random number $B_{t_{i}}=B_{t_{i-1}}+\sqrt{t_{i}-t_{i-1}} * N(0,1)$ where $N(0,1)$ is the standard normal random variable.
(c) Compute the sum $S(\omega)=\sum_{i=1}^{100} B_{t_{i-1}}^{2}(\omega)\left(B_{t_{i}}(\omega)-B_{t_{i-1}}(\omega)\right)$
(d) Repeat the above process 100 times to get 100 sample paths of the Brownian motion. Compute

$$
\bar{S}_{1}=\frac{\sum_{\omega} S(\omega)}{100}, \bar{S}_{2}=\frac{\sum_{\omega} S^{2}(\omega)}{100}
$$

(e) Use the approximation $\operatorname{Var}\left(\int_{0}^{1} B_{s}^{2} d B_{s}\right) \approx \mathbb{E}\left[S^{2}\right]-\mathbb{E}[S]^{2} \approx \bar{S}_{2}-\left(\bar{S}_{1}\right)^{2}$. Is your answer close to 1 ?
Please submit your code in the .xlsx together with your answers.

