Homework 3

Please upload pdf file only

Name your file in this format: LastName_FirstName_HW3.pdf
For example: my submitted pdf file name would be: Iqbal_Gazi_HW3.pdf

3.6 The shelf life, in days, for bottles of a certain prescribed medicine is a random variable having the density function

$$
f(x)= \begin{cases}\frac{20,000}{(x+100)^{3}}, & x>0 \\ 0, & \text { elsewhere }\end{cases}
$$

Find the probability that a bottle of this medicine will have a shell life of
(a) at least 200 days;
(b) anywhere from 80 to 120 days.
3.11 A shipment of 7 television sets contains 2 defective sets. A hotel makes a random purchase of 3 of the sets. If x is the number of defective sets purchased by the hotel, find the probability distribution of X. Express the results graphically as a probability histogram.
3.40 A fast-food restaurant operates both a drivethrough facility and a walk-in facility. On a randomly selected day, let X and Y, respectively, be the proportions of the time that the drive-through and walk-in facilities are in use, and suppose that the joint density function of these random variables is

$$
f(x, y)= \begin{cases}\frac{2}{3}(x+2 y), & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Find the marginal density of X.
(b) Find the marginal density of Y.
(c) Find the probability that the drive-through facility is busy less than one-half of the time.
3.7 The total number of hours, measured in units of 100 hours, that a family runs a vacuum cleaner over a period of one year is a continuous random variable X that has the density function

$$
f(x)= \begin{cases}x, & 0<x<1 \\ 2-x, & 1 \leq x<2 \\ 0, & \text { elsewhere }\end{cases}
$$

Find the probability that over a period of one year, a family runs their vacuum cleaner
(a) less than 120 hours;
(b) between 50 and 100 hours.
3.13 The probability distribution of X, the number of imperfections per 10 meters of a synthetic fabric in continuous rolls of uniform width, is given by

x	0	1	2	3	4
$f(x)$	0.41	0.37	0.16	0.05	0.01

Construct the cumulative distribution function of X.
3.47 The amount of kerosene, in thousands of liters, in a tank at the beginning of any day is a random amount Y from which a random amount X is sold during that day. Suppose that the tank is not resupplied during the day so that $x \leq y$, and assume that the joint density function of these variables is

$$
f(x, y)= \begin{cases}2, & 0<x \leq y<1 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Determine if X and Y are independent.
(b) Find $P(1 / 4<X<1 / 2 \mid Y=3 / 4)$.

