Olin School of Business, Washington University Stochastic Foundation of Finance (FIN 538)

Thao Vuong

Problem Set 4

Problem In this problem we will see if the stochastic integral formula

$$
\int_{0}^{1} B_{s}(\omega) d B_{s}(\omega)=\frac{B_{1}^{2}}{2}-\frac{1}{2}
$$

holds true in simulations. Use Excel to generate 100 sample paths of the Brownian motion in the time interval $[0,1]$ by following the following steps:

1. Partition the interval $[0,1]$ into 100 smaller intervals each of length $0.01: t_{0}=0, t_{1}=$ $0.01, t_{2}=0.01, \cdots, t_{100}=1$.
2. For each t_{i}, generate a random number $B_{t_{i}}=B_{t_{i-1}}+\sqrt{t_{i}-t_{i-1}} * N(0,1)$ where $N(0,1)$ is the standard normal random variable.
3. Compute $I(\omega)=\frac{B_{1}(\omega)^{2}}{2}-\frac{1}{2}$ (note each ω corresponds to one simulation).
4. Compute the sum $S(\omega)=\sum_{i=1}^{100} B_{t_{i-1}}(\omega)\left(B_{t_{i}}(\omega)-B_{t_{i-1}}(\omega)\right)$
5. Repeat the above process 100 times to get 100 sample paths of the Brownian motion. Compute

$$
\bar{I}=\frac{\sum_{\omega} I(\omega)}{100}
$$

and

$$
\bar{S}=\frac{\sum_{\omega} S(\omega)}{100}
$$

Are they close to 0 ? Why or why not?
6. Consider $\hat{S}(\omega)=\sum_{i=1}^{100} B_{t_{i}}(\omega)\left(B_{t_{i}}(\omega)-B_{t_{i-1}}(\omega)\right)$ and define

$$
\overline{\hat{S}}=\frac{\sum_{\omega} \hat{S}(\omega)}{100}
$$

Is $\overline{\hat{S}}$ close to 0 ? Why or why not?
Please submit your code in the .xlsx together with your answers.

