Olin School of Business, Washington University Stochastic Foundation of Finance (FIN 538)

Thao Vuong

Problem Set 5

Problem 1 Consider a world with only two dates: today and tomorrow. There are two possible states tomorrow: Good and Bad. There are two different risky stocks A, B and no other assets in the market. Assume there is no arbitrage. The probability of the two states and the current prices and future (state-contingent) prices of the assets are listed below.

Asset	Current Price	Tomorrow Price	
		Good (Prob. 30\%)	Bad (Prob. 70\%)
A	$\$ 3$	$\$ 5$	$\$ 2$
B	$\$ 2$	$\$ 4$	$\$ 1$

1. Construct a portfolio of A and B in which the risk associated with A is exactly offset by the risk of B (that is, use B to hedge A). In other words, this portfolio is risk free.
2. Compute the risk-free rate in the market.
3. Does the risk-free rate depend on the prospect of the economy (that is, the probabilities of Good and Bad states)? Explain why or why not.

Problem 2 Consider the price of a security that follows the process in the figure below. At each time $t=0, t=1$, the price jumps up or down with a (physical) probability $\frac{1}{2}$. The risk-free rate is 0 in both periods.

1. Are investors who trade this security risk-averse, risk-neutral or risk-loving?
2. Find the probability q (of the price going up) at which investors can price the security as if they're risk neutral.

Problem 3 Use Ito's Lemma to compute the following differentials:

1. $d\left(t^{2} B_{t} \frac{1}{2}\right)$.
2. $d\left(e^{\int_{0}^{t} \mu d s+\sigma d B_{s}}\right)$ where μ, σ are constants.

Problem 4 1. Let the process X_{t} satisfy $d X_{t}=\mu d t+\sigma d B_{t}$. Show that X_{t} is a martingale if and only if $\mu=0$.
2. Using Ito's lemma, find the expression for $d Y_{t}$ where $Y_{t}=e^{\theta B_{t}-\frac{1}{2} \theta^{2} t}, \theta$ is a constant and show that Y_{t} is a martingale.
3. Using Ito's lemma, find the expression for $d Z_{t}$ where $Z_{t}=\left(B_{t}-t\right) e^{B_{t}-\frac{t}{2}}$ and show that Z_{t} is a martingale.

Problem 5 Consider the following process

$$
d r_{t}=\left(\theta-a r_{t}\right) d t+\sigma d B_{t}
$$

where θ, a, and σ are constant, and B_{t} is a standard Brownian motion. Define the process $R_{t}=e^{a t} r_{t}$.

1. Express $d R_{t}$ in differential form using Ito's lemma. This expression for $d R_{t}$ should depend only on t and B_{t} (and not r_{t} or R_{t}). Use this result to express R_{t} in integral form (the expression for R_{t} might depend on a stochastic integral and it's fine to leave it like that.)
2. Solve for r_{t} (similarly, the expression for r_{t} might depend on a stochastic integral and it's fine to leave it in that form.)
