
Hack 10.0
Computer Science I

File I/O

Department of Computer Science & Engineering

University of Nebraska–Lincoln

Introduction

Hack session activities are small weekly programming assignments intended to get you
started on full programming assignments. Collaboration is allowed and, in fact, highly
encouraged. You may start on the activity before your hack session, but during the hack
session you must either be actively working on this activity or helping others work on the
activity. You are graded using the same rubric as assignments so documentation, style,
design and correctness are all important.

Exercises

To get more practice working with files, you will write several functions that involve
operations on files. In particular, implement the following functions.

1. Write a function that, given a file path/name as a string opens the file and returns
its entire contents as a single string. Any endline characters should be preserved.

char *getFileContents(const char *filePath);

2. Write a function that, given a file path/name as a string opens the file and returns
the contents of the file as an array of strings. Each element in the array should
correspond to a line in the file. Any end line character should be chomped out and
not included. The size of the resulting array of strings needs to be communicated
to the calling function using the pass-by-reference numLines parameter (it is not
input).

char **getFileLines(const char *filePath, int *numLines);

Hack 10.0 – Computer Science I 1 / 3

Protein Translation

DNA is a molecule that encode genetic information. A DNA sequence is a string of
nucleotides represented as letters A, T, C, and G (representing the nucleobases adenine,
thymine, cytosine, and guanine respectively). Protein sequencing in an organism con-
sists of a two step process. First the DNA is translated into RNA by replacing each
thymine nucleotide with uracil (U). Then, the RNA sequence is translated into a protein
(a sequence of amino acids) according to the following rules.

The RNA sequence is processed 3 bases at a time called a codon. Each codon is translated
into a single amino acid according to known encoding rules. There are 20 such amino
acids, each represented by a single letter in

(A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S, T, V,W, Y)

Because there are 43 = 64 possible codons but only 20 amino acids, some codons translate
to the same amino acid.

The rules for translating trigrams are complex, but we’ve simplified the process by pro-
viding a utility function, rnaToProtein which takes an RNA codon (as a string) and
returns its protein (as a single char). If you provide it an invalid sequence, it will return
\0 the null character.

In addition, the trigrams UAA, UAG, and UGA are special markers that indicate a
(premature) end to the protein sequencing (there may be additional nucleotides left in
the RNA sequence, but they are ignored and the translation ends). The function we’ve
provided will return a lower-case x character for any of these three trigrams.

As an example, suppose we start with the DNA sequence AAATTCCGCGTACCC;
it would be encoded into RNA as AAAUUCCGCGUACCC; and into an amino acid
sequence KFRV P .

You will write a program that takes two command line arguments. The first is an input
file containing a DNA sequence and the second is the name of the output file in which
you’ll place the translated protein sequence. As an example, your program should be
executable from the command line as:

~>./a.out dnaInputFile.txt protein.txt

The input file may contain irrelevant whitespace characters to avoid very long lines. You
will need to ignore any whitespace characters when you process the data.

Place all your code in a file named proteinTranslator.c .

Instructions

• For the exercises, place all your function prototypes into a file named file_utils.h

and and their definitions in a file named file_utils.c . In addition, you’ll want

Hack 10.0 – Computer Science I 2 / 3

to create a main test driver program that demonstrates at least 3 cases per function
to verify their output. You need not hand it in, however.

• Code for the rnaToProtein function as well as a demonstration on how to use it
has been provided in the following repo:

https://github.com/cbourke/CSCE155-Hack10.0

However, you only need to handin proteinTranslator.c (and anything else that

you may find helpful). Do not make changes to the provided files since you won’t
be able to hand them in (the grading script provides them for you).

• Hint: Code reuse is a Very Good Thing. Your protein program can use your file
utility functions, but also: feel free to include any additional functions you may
have written before in the file_utils.h and file_utils.c files and use them
in your protein translator program.

• You are encouraged to collaborate any number of students before, during, and after
your scheduled hack session.

• You may (in fact are encouraged) to define any additional “helper” functions that
may help you.

• Include the name(s) of everyone who worked together on this activity in your source
file’s header.

• Turn in all of your files via webhandin, making sure that it runs and executes
correctly in the webgrader. Each individual student will need to hand in their own
copy and will receive their own individual grade.

Hack 10.0 – Computer Science I 3 / 3

https://github.com/cbourke/CSCE155-Hack10.0

