Mathematics 405

Programming assignment 10
Due: Friday, November 19

The shifted QR algorithm

In class, we saw a version of the $Q R$ algorithm that started with a symmetric, tridiagonal matrix A and successively found $A_{k}=Q_{k} A_{k-1} Q_{k}^{T}$ so that the off-diagonal elements of A_{k} converge to 0 . The eigenvalues of A then appear on the diagonal.

In this assignment, we're going to speed up the convergence of the sequence A_{k}. Let's assume we have the tridiagonal matrix

$$
A=\left[\begin{array}{ccccccc}
a_{1} & b_{2} & 0 & 0 & \ldots & 0 & 0 \\
b_{2} & a_{2} & b_{3} & 0 & \ldots & 0 & 0 \\
0 & b_{3} & a_{3} & b_{4} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & a_{n-1} & b_{n} \\
0 & 0 & 0 & 0 & \ldots & b_{n} & a_{n}
\end{array}\right]
$$

So $a_{k}=A_{k, k}$ and $b_{k}=A_{k-1, k}$. If $b_{n}=0$, then the matrix has the form

$$
A=\left[\begin{array}{cc}
A^{\prime} & 0 \\
0 & a_{n}
\end{array}\right]
$$

which shows us that a_{n} is an eigenvalue and that we can focus on finding the eigenvalues of the $(n-1) \times(n-1)$ matrix A^{\prime}. So our goal will be to perform $Q R$ steps to make $b_{n}=0$.

We will use $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ to denote the eigenvalues of A. With some work, we could see that the rate at which $b_{n} \rightarrow 0$ in the $Q R$ algorithm is proportional to $\left|\frac{\lambda_{n}}{\lambda_{n-1}}\right|$. To speed up convergence, we will form an estimate of λ_{n}, which we call σ, and then consider $A-\sigma I$, whose eigenvalues are $\lambda_{j}-\sigma$. In this matrix, b_{n} converges to 0 at a rate proportional to $\left|\frac{\lambda_{n}-\sigma}{\lambda_{n-1}-\sigma}\right|$. If $\sigma \approx \lambda_{n}$, then $\lambda_{n}-\sigma$ is close to zero, which means the convergence will be rapid. To recover the eigenvalues of A, we add σ to the eigenvalues of $A-\sigma I$.

Here's how we form σ, our estimate to λ_{n}. An easy way to estimate λ_{n} is just using the entry $a_{n}=A_{n, n}$. But a better estimate would be to consider the 2×2 matrix in the lower right corner:

$$
\left[\begin{array}{cc}
a_{n-1} & b_{n} \\
b_{n} & a_{n}
\end{array}\right]
$$

and find its eigenvalues, which are

$$
\frac{\left(a_{n-1}+a_{n}\right) \pm \sqrt{\left(a_{n-1}-a_{n}\right)^{2}+4 b_{n}^{2}}}{2}
$$

Choose σ to be the eigenvalue of the 2×2 matrix that is closest to a_{n}.
Here's how the algorithm works then. We input an $n \times n$ symmetric, tridiagonal matrix A and a tolerance ϵ.

1. Set a variable shift $=0$.
2. Find σ using the recipe above.
3. Redefine $A=A-\sigma I$ and shift $=$ shift + sigma.
4. Perform one step of the $Q R$ method redefining $A=Q A Q^{T}$ using your previous code.
5. If $\left|b_{n}\right|<\epsilon$, then a_{n} is an eigenvalue of the shifted matrix. Recursively, find the eigenvalues of A^{\prime}, the $(n-1) \times(n-1)$ matrix in the upper left corner of A and combine them with a_{n}. Add shift to all the eigenvalues and return.
6. If $\left|b_{n}\right| \geq \epsilon$, go back to step 2 and repeat.

Goal: Your goal is to write a function $Q R(A$, tolerance) whose input parameters are an $n \times n$ symmetric, tridiagonal matrix A and a desired tolerance for the off-diagonal elements. Your function should return a list of eigenvalues of A.

Some things to take note of:

- A $[: k,: k]$ will give you the $k \times k$ matrix in the upper left corner of A.
- The last entry in a list 1 is $1[-1]$ and the second to last is $1[-2]$. That means that $A[-1,-1]$ is the entry in the lower right corner.
- How do you find the eigenvalue of a 1×1 matrix? This is the final step in the recursion.

A good example to test is the 9×9 matrix that computes a discrete approximation to the second derivative of a function (2's on the diagonal and -1 's on the tridiagonal). Check your results against np.linalg.eig (A) [0].

If you count the number of steps, you should find convergence is incredibly fast. For instance, with a tolerance of 10^{-4} and using the 9×9 second-derivative matrix A, about 15 total steps are required, which is amazing.

Remember when we looked at rates of convergence earlier and saw that fixed point iteration is linear and Newton's method is quadratic? This method is cubic, which is very rare and very wonderful. Due to its rapid convergence, this algorithm was named one of the 10 most important algorithms of the $20^{\text {th }}$ century.
http://pi.math.cornell.edu/~ajt/presentations/TopTenAlgorithms.pdf

