
CS 114 Spring 2022 Assignment 09
Due Tuesday, July 19 at 2:30 pm (no late submissions)

!

Plagiarism.
• All work in CS 114 is to be done individually. The penalty for plagiarism on assignments

(first offense) is a mark of 0 on the assignment and a 5% reduction of the final grade, con-
sistent with School of Computer Science policy. In addition, a letter detailing the offense
is sent to the Associate Dean of Undergraduate Studies, meaning that subsequent offenses
will carry more severe penalties, up to suspension or expulsion.
• To avoid inadvertently incurring this penalty, you should discuss assignment issues with

other students only in a very broad and high-level fashion. Do not take notes during such
discussions, and avoid looking at anyone else’s code, on screen or on paper. If you find
yourself stuck, contact the ISA or instructor for help, instead of getting the solution from
someone else. Do not consult other books, library materials, Internet sources, or solutions
(yours or other students’) from other courses or other terms.

Assignment Guidelines.
• This assignment covers material in Module 9.
• Submission details:

– Solutions to these questions must be placed in files a09q1.py, a09q2.py, and a09q3.py.
– All solutions must be submitted to MarkUs. No solutions will be accepted through email, even

if you are having issues with MarkUs.
– Verify using MarkUs and your basic test results that your files were properly submitted and are

readable on MarkUs.
– Be sure to review the Academic Integrity policy on the Assignments page.

• Use a tolerance of 0.0001 for all tests that use check.within.
• Restrictions:

– Unless the question specifically describes exceptions, you are restricted to using the functions
and techniques covered in or before Module 9.

– Read each question carefully for additional restrictions.
• The solutions you submit must be entirely your own work. Do not look up either full or partial

solutions on the Internet or in printed sources.

Write the docstring and annotations carefully, for every function you write.
We will not mark code that is not documented and annotated.

!
Run this in Jupyter to download a file containing starter code:
!wget https://student.cs.uwaterloo.ca/~cs114/src/Assignment-09.ipynb

1



CS 114 Spring 2022 Assignment 09
Due Tuesday, July 19 at 2:30 pm (no late submissions)

1. Most Children.
E
x
e
r
c
is
e

Write a function most_children(fam). It takes a Family and returns a Tuple[int, str] indicating the
number of children and name of the person from fam who has the most children.
For example, in the tully tree that we’ve looked at before, the person with the most children is
'Catelyn', who has 5 children. So:
most_children(tully) ⇒ (5, 'Catelyn')

In the case of a tie:
• When it is a tie between two “descendants”, the leftmost wins.

So in example1, Cy wins over Io.
most_children(example1) ⇒ (3, 'Cy')

• When it is a tie between the “parent” and one of the descendants, the “parent” wins.
So in example2, Nat wins over Ollie.

most_children(example2) ⇒ (4, 'Nat')

Ann

Hi

MoIo

LiKimJo

Bob

GlenCy

FoxEdDi

Diagram of example1

Nat

VolodymyrUqTimOllie

SalRoQPoe

Diagram of example2

2



CS 114 Spring 2022 Assignment 09
Due Tuesday, July 19 at 2:30 pm (no late submissions)

2. Changing a LLT. Recall the way we defined a leaf-labelled tree, LLT:
LLT = Union[int, List['LLT']]

E
x
e
r
c
is
e

Write a function tree_map(t: LLT, f: Callable). It returns a new LLT that has the same shape as t,
but where each leaf has been transformed by the function f.
For example, we define a few simple Callable values:
def add1(x: int) -> int: return x + 1
def sqr(x: int) -> int: return x*x
def double(n: int) -> int: return n * 2

We can now make some tests:
check.expect("TM1",

tree_map([2, [[4], 6], 0, [1]], add1), [3, [[5], 7], 1, [2]])

check.expect("TM2",

tree_map([2, [[4], 6], 0, [1]], double), [4, [[8], 12], 0, [2]])

check.expect("TM3", tree_map(7, sqr), 49)

check.expect("TM4", tree_map([[[[[[[7]]]]]]], add1), [[[[[[[8]]]]]]])

3



CS 114 Spring 2022 Assignment 09
Due Tuesday, July 19 at 2:30 pm (no late submissions)

3. No loops.
Start with the following function:

def zero(f: Callable, x0: float, x1: float) -> float:
"""Return a value between x0 and x1 such that the function f(x)

returns a value that is close to 0 within 0.0001

Requires:

f is continuous on [x0, x1)

f(x0) and f(x1) have opposite signs

x0 <= x1

"""

while abs(f(x0)) > 0.0001:
mid_point = (x0 + x1) / 2

if f(mid_point) * f(x0) < 0:
x1 = mid_point

else:
x0 = mid_point

return x0

E
x
e
r
c
is
e

Rewrite the function zero without using any loops. Use recursion only.

4


	Most Children
	Changing a LLT
	No loops

