Linear Approximation and Differentials

(1) True or False. Explain why or why not.

Also, for each of (i)-(iv), graph f and L (if it exists) on one set of axes.
(i) The linear approximation to $f(x)=x^{2}$ at $x=0$ is $L(x)=0$.
(ii) Linear approximation at $x=0$ provides a good approximation to $f(x)=|x|$.
(iii) If $f(x)=m x+b$, then the linear approximation to f at any point is $L(x)=f(x)$.
(iv) When linear approximation is used to estimate the value of $f(x)=\ln x$ near $x=e$ the approximations are underestimates of the true value.
(2) Use linear approximation to estimate $f(5.1)$ given that $f(5)=10$, and $f^{\prime}(5)=-2$.
(3) Given a function $f(x)=(1+x)^{n}$, show that $L(x)=1+n x$ is the linear approximation of f at 0 .
(4) Consider the function $f(x)=\sqrt{2} \cos x$.
(i) Find the linear approximation L to the function f at $a=\frac{\pi}{4}$.
(ii) Graph f and L on the same set of axes.
(iii) Based on the graphs of part (ii), state whether linear approximations to f near a are underestimates or overestimates.
(iv) Compute $f^{\prime \prime}(a)$ to confirm your conclusion.
(5) Use linear approximations to estimate the following quantities.

Choose a suitable function f and a value of a that produces a small error.
(i) $\sqrt[3]{-7.97}$
(ii) $e^{0.02}$
(6) Differentials. Consider the function $f(x)=\ln (1-x)$.
(i) Express the relationship between a small change in x and the corresponding change in y in the form $d y=f^{\prime}(x) d x$.
(ii) Use your answer in part (i) to approximate the change in f when x changes from $x=-1$ to $x=-1.02$.

