

Get Homework Help From Expert Tutor

Get Help

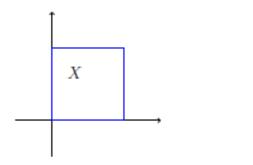
- 1. For each of the statements below determine whether it is true or false, providing reasons for your answer. Let (X, \mathcal{T}) be a topological space and $A, B \subseteq X$ be two compact subsets.
- (a) Is $A \cup B$ compact? [2 marks]
- (b) If (X, T) is Hausdorff, is $A \cap B$ compact? [2 marks]
- **2.** Let $f:[a,b]\to\mathbb{R}$ be continuous.
- (a) Prove that the map $g:[a,b] \to \mathbb{R}^2$, $x \mapsto (x,f(x))$ is also continuous. [3 marks]
- (b) Prove that the graph of f is a compact subset of \mathbb{R}^2 . [3 marks]
- 3. Let (X, \mathcal{T}) and (Y, \mathcal{S}) be connected topological spaces. Show that $X \times Y$ is connected in the product topology. [8 marks]
- 4. Consider the subsets [5 marks]

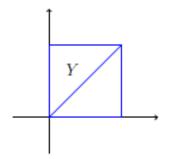
$$X = \{(x, y) : 0 \le x \le 1, y \in \{0, 1\}\} \cup \{(x, y) : 0 \le y \le 1, x \in \{0, 1\}\}$$

and

$$Y = X \cup \{(x, x) : 0 \le x \le 1\}$$

of \mathbb{R}^2 with the standard topology from \mathbb{R}^2 . Show that X and Y are not homeomorphic.





5. Consider the subset [8 marks]

$$Z = \{(0,0),(0,1)\} \cup \bigcup_{n=1}^{\infty} L_n$$

of \mathbb{R}^2 (with the standard topology from \mathbb{R}^2), where

$$L_n = \{(1/n, y) : 0 \le y \le 1\}$$

for all $n \ge 1$. Let U be a non-empty subset of Z which is both open and closed in Z. Show that if U contains one of the points (0,0) and (0,1), then it contains the other as well.

6. Let \mathbb{RP}^2 be the real projective space as defined in lectures, and let $\pi: S^2 \longrightarrow \mathbb{RP}^2$ be the natural projection. Consider \mathbb{R}^3 and \mathbb{R}^4 with the standard topologies, and let the function $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ be defined by

$$f(x, y, z) = (x^2 - z^2, xy, yz, xz).$$

- (a) Show that there exists a function $g: \mathbb{RP}^2 \longrightarrow \mathbb{R}^4$ such that $f = g \circ \pi$ on S^2 . [4 marks]
- (b) Show that g is continuous and one-to-one. [11 marks]
- (c) Show that g is a homeomorphism between \mathbb{RP}^2 and the subset $Y = g(\mathbb{RP}^2)$ of \mathbb{R}^4 . [4 marks]

Get Homework Help From Expert Tutor

Get Help