
https://studydaddy.com/?utm_source=pdf


INFORMATION ON PTHREADS From the Textbook 
 
The examples are from the required textbook “Operating System Concepts” (10th edition) Section 4.4.1 
with minor changes. They are included for the sake of completeness of this assignment. 
 
Pthreads refers to the POSIX standard (IEEE 1003.1c) defining an API for thread creation and 
synchronization. This is a specification for thread behavior, not an implementation. Operating-system 
designers may implement the specification in any way they wish. Numerous systems implement the 
Pthreads specification; most are UNIX-type systems, including Linux and macOS. Although Windows 
doesn't support Pthreads natively, some third-party implementations for Windows are available. 
 
The C program shown in Figure 4.11 demonstrates the basic Pthreads API for constructing a 
multithreaded program that calculates the summation of a non-negative integer in a separate thread. In a 
Pthreads program, separate threads begin execution in a specified function. In Figure 4.11, this is the 
runner() function. When this program begins, a single thread of control begins in main(). After some 
initialization, main() creates a second thread that begins control in the runner() function. Both threads 
share the global data sum. 
 
#include <pthread.h> 
#include <stdio.h> 
#include <stdlib.h> 
 
int sum;  /* this data is shared by the thread(s) */ 
void *runner(void *param);    /* the thread */ 
 
int main(int argc, char *argv[]) 
{ 

pthread_t tid;  /* the thread identifier */ 
pthread_attr_t attr;   /* set of thread attributes */ 
if (argc != 2) 
 { 
      fprintf(stderr,"usage: a.out <integer value>\n"); 
      return -1; 
} 
if (atoi(argv[1]) < 0)  
{ 
    fprintf(stderr,"%d must be>= 0\n",atoi(argv[1]));    
   return -1; 
} 
 
/* set the default attributes */ 
pthread_attr_init(&attr); 
/* create the thread */ 
pthread_create(&tid,&attr,runner,argv[1]); 
/* wait for the thread to exit */ 
pthread_join(tid,NULL); 
printf("sum = %d\n",sum); 

} 

/* The thread will begin control in this function */ 
void *runner(void *param) 
{ 
    int i, upper= atoi(param); // Note from instructor: to compile on turing, need to first cast param to (char*): atoi ((char *) param) 
     sum = 0; 
     for (i = 1; i <= upper; i++) 
       sum += i; 
     pthread_exit (0) ; 

} 
 
Figure 4.11 Multithreaded C Program using Pthreads API 



 
Let's look more closely at this program. All Pthreads programs must include the pthread.h header file. The 
statement pthread_t tid declares the identifier for the thread we will create. Each thread has a set of 
attributes, including stack size and scheduling information. The pthread_attr_t attr declaration represents 
the attributes for the thread. We set the attributes in the function call pthread_attr_init(&attr). Because we 
did not explicitly set any attributes, we use the default attributes provided. A separate thread is created 
with the pthread_create() function call. In addition to passing the thread identifier and the attributes for 
the thread, we also pass the name of the function where the new thread will begin execution—in this case, 
the runner() function. Last, we pass the integer parameter that was provided on the command line, 
argv[1]. 
 
At this point, the program has two threads: the initial (or parent) thread in main() and the summation (or 
child) thread performing the summation operation in the runner() function. This program follows the 
thread create/join strategy, whereby after creating the summation thread, the parent thread will wait for it 
to terminate by calling the pthread_join() function. The summation thread will terminate when it calls the 
function pthread_exit(). Once the summation thread has returned, the parent thread will output the value 
of the shared data sum. 
 



https://studydaddy.com/?utm_source=pdf

