

 STUDYDADDY
 	How it Works
	Homework Answers
	
 Ask a Question
	Top Tutors
	FAQ
	Sign in

 StudyDaddy

 Information Systems
 Coding help with the file attached Coding help with the file attached

 I n d iv id ual P ro je ct: t xted D eliv e ra b le 1 P ro je ct G oals I n t h is p ro je ct, y o u w il l b e d eve lo pin g a s im ple J a va a p plic a tio n (t x te d) u sin g a n a g il e , t e st-d riv e n p ro ce ss i n vo lv in g m ult ip le d eliv e ra b le s. W hil e y o u w il l r e ce iv e o ne g ra d e f o r t h e e n tir e p ro je ct, e ach d eliv e ra b le m ust b e c o m ple te d b y i t s o w n d ue d ate , a n d a ll d eliv e ra b le s w il l c o ntrib ute to t h e o ve ra ll p ro jec t g ra d e. S p eciﬁ ca tio n o f t h e t xted U til it y txted i s a s im ple c o m man d -lin e u til it y w rit te n i n J a va w it h t h e f o llo w in g s p eciﬁ ca tio n:
 S u m mary txted a llo w s f o r s im ple t e xt m an ip ula tio n o f t h e c o nten t o f a ﬁ le . S yn ta x txted OPTIONS FILE D esc rip tio n P ro gra m txted p erfo rm s b asic t e xt t ra n sfo rm atio ns o n l in es o f t e xt f ro m a n i n p ut F IL E . U nle ss t h e - f o ptio n (s e e b elo w) i s s p eciﬁ ed , t h e p ro gra m w rit e s t ra n sfo rm ed t e xt t o s td o ut a n d e rro rs /u sa g e m essa g es t o s td err. T h e F IL E p ara m ete r i s r e q uir e d a n d m ust b e t h e l a st p ara m ete r. O PTIO NS m ay b e z e ro o r m ore o f t h e f o llo w in g a n d m ay o ccu r i n a n y o rd er: ● - f E d it ﬁ le i n p la ce . T h e p ro gra m o ve rw rit e s t h e in p ut ﬁ le w it h t ra n sfo rm ed t e xt i n ste ad o f w rit in g t o s td o ut. ● - e < strin g> E xclu d e a n y l in es c o nta in in g t h e g iv e n s trin g . ● - i U se d w it h t h e - e ﬂ ag O NLY ; a p plie s c a se i n sen sit iv e m atc h in g . ● - s < i n te g er > ● S kip e it h er t h e e ve n o r o dd l in es i n a ﬁ le, w it h 0 b ein g ev en a n d 1 b ein g o dd.
 ● - x < strin g> A dds s trin g a s a s u ﬃ x t o e ach l in e. ● - r R eve rs e t h e o rd er o f l in es i n a ﬁ le - - t h e l a st l in e is ﬁ rs t, t h e ﬁrs t l in e i s l a st, a n d s o o n. ● - n < i n te g er > A dd a l in e n um ber ﬁ eld f o llo w ed b y a s in g le sp ace t o t h e b eg in nin g o f ea ch l in e o utp ut. T h e l in e n um ber ﬁ eld s h all b e l e ft-p ad ded w it h 0 o r l e ft-t ru nca te d a s r e q uir e d t o t h e w id th s p eciﬁ ed b y t h e i n teg er p ara m ete r.
 L in e n um berin g s h o uld s ta rt a t 1 . ● N O TES : ● W hil e t h e l a st c o m man d -lin e p ara m ete r p ro vid ed i s a lw ays t re ate d a s t h e ﬁ le n am e, O PTIO NS ﬂ ag s c a n b e p ro vid ed i n a n y o rd er a n d w il l b e a p plie d a s f o llo w s:
 ○ O ptio ns - f a n d - i s h o uld b e p ro ce sse d ﬁ rs t, a s t h ey d ete rm in e g lo bal p ara m ete rs o f t h e c o m puta tio n. ○ O ptio ns - s , - e , - x , - r , a n d - n s h o uld b e p ro ce sse d i n t h is o rd er. T h at i s : (1) i f - s i s p re se n t, t h en ﬁ le c o nte n t i s ﬁ lt e re d b ase d o n t h e s p eciﬁ ed p ara m ete r; (2) i f - e i s p re se n t, t h en ﬁ le c o nte n t e xclu d es l in es t h at i n clu d e t h e s p eciﬁ ed p ara m ete r; (3) i f - x i s p re se n t, t h en a s u ﬃ x s h o uld b e a p plie d ; (4) i f - r i s p re se n t, t h en r e ve rs a l o f l in e o rd er l o gic i s p erfo rm ed ; (5) i f - n i s p re se n t, t h en p ad ded l in e num berin g s h o uld b e a p plie d . ● S p ecif y in g o ptio n - i w it h o ut h avin g s p eciﬁ ed o ptio n - e s h o uld r e su lt i n a n e rro r. ● S p ecif y in g o ptio n - e o r - x w it h a n e m pty s trin g p ara m ete r s h o uld r e su lt i n a n e rro r. ● S p ecif y in g o ptio n - n w it h a n i n te g er < 0 s h o uld r e su lt i n a n er ro r. ● S p ecif y in g o ptio n - s w it h a n i n p ut p ara m ete r n o t e q ual t o 0 o r 1 s h o uld r e su lt i n a n e rro r. E ach ﬁ le s ta rt s w it h l in e 1 , w hic h s h o uld b e c o nsid ere d o dd. ● I f o ptio ns a re r e p eate d , o nly t h eir l a st o ccu rre n ce i s c o nsid ere d . ● A ll p ro gra m o ptio n p ara m ete rs a re r e q uir e d a n d w il l r e su lt i n a n e rro r i f o m it te d . ● Y o u s h o uld a ssu m e t h at t h e < strin g > p ara m ete rs w il l n o t c o nta in n ew lin es, a s t h e b eh avio r o f t h e p ro gra m i s p la tfo rm d ep en d en t a n d u nd eﬁ ned i n t h o se c a se s. ● Y o u s h o uld a ssu m e t h at t h e l a st l in e o f t h e i n p ut ﬁ le w il l b e n ew lin e-t e rm in ate d . O th erw is e , p ro gra m b eh avio r i s u nd eﬁ ned . ○ T h e o nly e xce p tio n w ould b e a n e m pty i n p ut ﬁ le w hic h s h o uld p ro duce a n e m pty o utp ut w it h n o o ptio ns e xec uted .
 E X A M PLE S O F U SA G E (In the following, “ ↵ ” represents a newline character .) E xample 1:
 t xted -f FILE i nput FILE : a lphanumeric123foobar ↵ ↵ e dited FILE : a lphanumeric123foobar ↵ ↵ s tdout : n othing sent to stdout s tderr : n othing sent to stderr E xample 2:
 t xted -e ABC FILE i nput FILE : 0 1234abc ↵ 5 6789def ↵ 0 1234ABC ↵ 5 6789DEF ↵ ↵ e dited FILE : f ile not edited s tdout : 0 1234abc ↵ 5 6789def ↵ 5 6789DEF ↵ ↵ s tderr : n othing sent to stderr E xample 3:
 t xted -e ABC -i FILE i nput FILE : 0 1234abc ↵ 5 6789def ↵ 0 1234ABC ↵ 5 6789DEF ↵ ↵ e dited FILE : f ile not edited s tdout : 5 6789def ↵ 5 6789DEF ↵ ↵ s tderr : n othing sent to stderr E xample 4:
 t xted -r FILE i nput FILE : 0 1234abc ↵ 5 6789def ↵ 0 1234ABC ↵ 5 6789DEF ↵ ↵ e dited FILE : f ile not edited s tdout : 5 6789DEF ↵ 0 1234ABC ↵ 5 6789def ↵ 0 1234abc ↵ ↵ s tderr : n othing sent to stderr E xample 5:
 t xted -s 1 FILE i nput FILE : 0 1234abc ↵ 5 6789def ↵ 0 1234ABC ↵ 5 6789DEF ↵ ↵ e dited FILE : f ile not edited s tdout : 5 6789def ↵ 5 6789DEF ↵ ↵ s tderr : n othing sent to stderr E xample 6:
 t xted -x ! FILE i nput FILE : 0 1234abc ↵ 5 6789def ↵ 0 1234ABC ↵ 5 6789DEF ↵ ↵ e dited FILE : f ile not edited s tdout : 0 1234abc! ↵ 5 6789def! ↵ 0 1234ABC! ↵ 5 6789DEF! ↵ ↵ s tderr : n othing sent to stderr E xample 7:
 t xted -n 3 FILE i nput FILE : 0 1234abc ↵ 5 6789def ↵ 0 1234ABC ↵ 5 6789DEF ↵ ↵ e dited FILE : f ile not edited s tdout : 0 01 01234abc ↵ 0 02 56789def ↵ 0 03 01234ABC ↵ 0 04 56789DEF ↵ ↵ s tderr : n othing sent to stderr E xample 8:
 t xted -n 4 -r -x !!! FILE i nput FILE : 0 1234abc ↵ 5 6789def ↵ 0 1234ABC ↵ 5 6789DEF ↵ ↵ e dited FILE : f ile not edited s tdout : 0 001 56789DEF!!! ↵ 0 002 01234ABC!!! ↵ 0 003 56789def!!! ↵ 0 004 01234abc!!! ↵ ↵ s tderr : n othing sent to stderr E xample 9:
 t xted -n 3 -r -e Bar -s 0 -n 2 -x ! -f FILE i nput FILE : a lphanumeric123foo ↵ a lphanumeric123Foo ↵ a lphanumeric123FOO ↵ a lphanumeric123bar ↵ a lphanumeric123Bar ↵ a lphanumeric123BAR ↵ a lphanumeric123foobar ↵ a lphanumeric123Foobar ↵ a lphanumeric123fooBar ↵ a lphanumeric123FooBar ↵ a lphanumeric123FOOBar ↵ a lphanumeric123FooBAR ↵ a lphanumeric123FOOBAR ↵ e dited FILE : 0 1 alphanumeric123FOOBAR! ↵ 0 2 alphanumeric123foobar! ↵ 0 3 alphanumeric123FOO! ↵ 0 4 alphanumeric123foo! ↵ ↵ s tdout : n othing sent to stdout s tderr : n othing sent to stderr E xample 10:
 t xted -i FILE i nput FILE : 0 1234abc ↵ 5 6789def ↵ 0 1234ABC ↵ 5 6789DEF ↵ ↵ e dited FILE : f ile not edited s tdout : n othing sent to stdout s tderr : U sage: t xted [- f | - i | - s i nteger | - e s tring | - r | - x s tring | - n i nteger] FILE D eliv era b le s S um mary This part of the document is provided to help you keep track of where you are in the individual project and will be updated in future deliverables.
 DELIVERABLE 1 (this deliverable, see below for details) ● Pr ovided:
 ○ txted specification ○ Skeleton of the main class for txted ○ Example tests and skeleton of the test class to submit ○ JUnit libr aries ● Expected:
 ○ Part I (Category Partition) ■ catpart.txt : TSL file you created ■ catpart.txt.tsl : test specifications generated by the TSLgenerator tool when run on your TSL file. ○ Part II (Junit Tests) ■ Junit tests derived from your category partition test frames (MyMainTest.java) DELIVERABLE 2 ● pr ovided: TBD ● expected: TBD DELIVERABLE 3 ● pr ovided: TBD ● expected: TBD DELIVERABLE 4 ● pr ovided: TBD ● expected: TBD D eliv era b le 1 : I n str u ctio n s Part I Generate between 50 and 90 test-case specifications (i.e., generated test frames) for the t xted utility using the category-partition method presented in lesson P4L2. Make sur e to watch the lesson and demo befor e getting started . When defining your test specifications, your goal is to suitably cover the domain of the application under test, including r elevant err oneous inputs and input combinations .
 Just to give you an example, if you were testing a calculator , you may want to cover the case of a division by zero.
 Do not manually generate combinations of inputs as single choices. Instead, use multiple categories and choices with necessary constraints to cause the tool to generate meaningful combinations. Using the calculator example again, you should not of fer choices “add” , “multiply” , and also “add and multiply” in a single category . In particular , make sur e to use constraints (err or and single), selector expr ession (if), and pr operties appr opriately , rather than eliminating choices, to keep the number of test cases within the specified thr esholds.
 Note that the domain is that of the java application under test , so you can assume that anything the shell would reject (e.g., unmatched double quotes) will not reach the application. In other words, you must test for invalid input arguments, but do not need to test for err ors involving parsing the command-line arguments befor e they ar e sent to the java application . Y ou can find more details about command-line ar gument parsing at this link .
 T o illustrate, the sample tests in Part II will demonstrate how input ar guments would be sent to your application.
 Please also keep in mind that you ar e only r equir ed to specify test inputs, but you do not have to specify the expected outcome for such inputs in Part I .
 It is therefore OK if you do not know how the system would behave for a specific input. Using once more the calculator example, you could test the case of a division by zero even if you did not know how exactly the calculator would behave for that input.
 T ools and Useful Files Y ou will use the TSLgenerator tool to generate test frames starting from a TSL file, just like we did in the demo for lesson P4L2. V ersions of the TSLgenerator for Linux, Mac OS X, and Windows, together with a user manual, are available at: ● TSLgenerator -manual.txt ● TSL generator for Linux ● TSL generator for Mac OS ● TSL generator for Windows 8 and newer ● TSL generator for Windows XP and earlier W e are also providing the TSL file for the example we used in the lesson, cp-example.txt , for your reference.
 Important: ● These ar e command-line tools , which means that you have to run them fr om the command line , as we do in the video demo, rather than by clicking on them. ● On Linux and Mac systems, you may need to change the permissions of the files to make them executable using the chmod utility . T o run the tool on a Mac, for instance, you should do the following, from a terminal: chmod +x TSLgenerator-mac ./TSLgenerator-mac ● Y ou can run the TSLgenerator as follows: [--manpage] [-cs] infile [-o outfile] Where < tool> is the specific tool for your architecture, and the command-line flags have the following meaning:
 --manpage Prints the man page for the tool. -c Reports the number of test frames that would be generated, without actually producing them . -s Outputs the result to standard output. -o outfile Outputs the result to file outfile, unless the -s option is also used . ● If you encounter issues while using the tool, please post a public question on Ed Discussion and consider running the tool on the VM provided for the class or on a dif ferent platform (if you have the option to do so). Gradescope will execute the tool on a Linux platform. Committing Part I ● Create a directory " IndividualProject " in the personal GitHub r epo we assigned to you . ● Add to this new directory two text files:
 ○ catpart.txt : TSL file you created. ○ catpart.txt.tsl : test specifications generated by the TSLgenerator tool when it processes your TSL file. ● Commit and push your files to GitHub. (Y ou can also do this only at the end of Part II, but it is always safer to have intermediate commits.) Part II In this second part of the deliverable, you will create actual test cases implementing the test specifications you created in Part I. (As discussed in the lesson on the category-partition method, each test frame is a test spec that can be instantiated as an individual concrete test case). To do so, you should perform the following steps:
 ● Download archive individualproject-d1.tar.gz ● Unpack the archive in the directory " IndividualProject ", which you created in Part I of the deliverable. Hereafter , we will refer to this directory as
 . ● After unpacking, you should see the following structure: ○
/txted/src/edu/gatech/seclass/txted/Main.java This is a skeleton of the Main class of the txted utility , which we provide so that the test cases for txted can be compiled. It contains an empty main method and a method usage, which prints on standard error a usage message and should be called when the program is invoked incorrectly . In case you wonder , this method is provided for consistency in test results. ○ /txted/test/edu/gatech/seclass/txted/MainTest.java This is a test class with a few test cases for the txted utility that you can use as an example and that correspond to the examples of usage of txted that we provided. In addition to providing this initial set of tests, class MainT est also provides some utility methods that you can leverage/adapt and that may help you implement your own test cases: ■ File createTmpFile() Creates a File object for a new temporary file in a platform-independent way . ■ File createInputFile*() Examples of how to create, leveraging method createTmpFile , input files with given contents as inputs for your test cases. ○
/txted/test/edu/gatech/seclass/txted/MyMainTest.java This is an empty test class in which you will add your test cases, provided for your convenience. ○ /txted/lib/junit-4.12.jar /txted/lib/hamcrest-core-1.3.jar JUnit and Hamcrest libraries to be used for the assignment. ● Use the test frames from Part I to generate additional JUnit test cases for the txted utility , one per frame, and put them in the test class MyMainTest (i.e., do not add your test cases to class MainTest). For ease of grading, please name your test cases txtedTest1 , txtedTest2 , and so on. Each test should contain a concise comment that indicates which test frame the test case implements. Use the following format for your comments, before each test: // Frame #: Y our test frames should contain enough information to create relevant test cases. If you cannot implement your test frames as useful JUnit tests (e.g., because the test frames do not pr ovide enough information), you should r evisit Part I . Extending the calculator example, if your test frame specified a numerical input, and you realized that you should use both negative and positive numbers in your actual test case, you should revise your categories and choices so that this is reflected in your test frames ● If you ar e uncertain what the r esult should be for a test, you may make a r easonable assumption on what to use for your test oracle. While you should include a test oracle, we will not grade the accuracy of the test oracle itself.
 Feel free to reuse and adapt, when creating your test cases, some of the code we provided in the MainTest class. Feel also free to implement your test cases dif ferently . Basically , class MainTest is provided for your convenience and to help you get started. Whether you leverage class MainTest or not, your test cases should assume (just like the test cases in MainTest do) that the txted utility will be executed from the command line, as follows:
 java -cp edu.gatech.seclass.txted.Main ● Make sur e not to make calls to System.exit() within your tests, as that cr eates pr oblems for JUnit. ● F or t h is d eliv era b le , d o n ot i m ple m en t t h e t xted u tilit y , b ut o n ly t h e t e st c a se s f o r i t . T his m ea n s t h at m ost, i f n ot a ll o f y ou r t e st c a se s w ill f a il, w hic h i s f in e. Committing Part II and Submitting the Deliverable ● As usual, commit and push your code to your individual, assigned private repository . ● Make sure that all Java files are committed and pushed, including the ones we provided. ● Make also sure to commit and push the provided libraries (lib directory). T o do so, you may need to force add the jar files (i.e., “ git add -f lib/* ”), which are typically excluded by the “ .gitignore ” file. ● Y ou can check that you committed and pushed all the files you needed by doing the following:
 ○ Clone a fresh copy of your personal repo in another directory ○ Go to directory IndividualProject/txted in this fresh clone ○ Compile your code. One way to do is to run, from a Unix-like shell:
 j avac -cp lib/* -d classes src/edu/ gatech/seclass/txted/*.java t est/edu/gatech/seclass/txted/*.java (on some platforms, you may need to first create directory “ classes ”) ○ Run your tests. Again, from a Unix-like shell, you can run:
 j ava -cp classes:lib/* org.junit.ru nner.JUnitCore e du.gatech.seclass.txted.MyMainTest 1 ● Submit on Gradescope a file, called submission.txt that contains, in two separate 1 I f u sin g a W in dow s-b ase d s y ste m , y o u m ay n ee d t o r u n j ava -cp "classes;lib/*" o rg.junit.runner.JUnitCore edu.gatec h.seclass.txted.MyMainTest i n ste a d .
 lines (1) your GT username and (2) the commit ID for your submission. For example, the content of file submission.txt for Geor ge P . Burdell could look something like the following:
 submission.txt g pburdell1 8 1b2f59 ● As soon as you submit, Gradescope will verify your submission by making sure that your files are present and in the correct location, as well as a few additional minor checks. If you pass all these checks, you will see a placeholder grade of 10 and a positive message from Gradescope. Otherwise, you will see a grade of 0 and an error message with some diagnostic information. Please note that:
 ○ a positive r esponse fr om Gradescope only indicates that you passed the initial checks and is meant to pr event a number of trivial errors ; ○ if your submission does not pass the Gradescope checks, it will not be graded and will r eceive a 0 , so please make sure to pay attention to the feedback you receive when you submit and keep in mind that you can r esubmit as many times as you want befor e the deadline. 2 Gradescope Queries I f y o u n eed c la rif ic a tio n o r h ave q uestio n s r e g ard in g G ra d esco pe o utp ut, p le ase p ost p riv a te ly o n E d D is cu ssio n (w e w ill m ake it p ublic if a ppro p ria te) a nd m ake s u re to a dd, w hen i t a pplie s: ● a lin k to th e G ra desco pe r e su lt s , a nd ● a ny in fo rm atio n th at m ay b e r e le va nt. T he b otto m lin e is th at, to m ake th e in te ra ctio n e ff ic ie nt, y o u s h ould m ake y o ur p osts a s s e lf - c o nta in ed a nd e asy-to -c h eck a s p oss ib le . T he fa ste r w e c a n r e sp ond to th e p osts , th e m ore s tu dents w e c a n h elp .
 2 A lt h ou gh w e t e ste d t h e c h eck er, i t i s p ossib le t h at i t m ig h t n ot h an dle c o rre ctly s o m e c o rn er c a se s. I f y o u r e ce iv e f e ed back t h at s e em s t o b e i n co rre ct, p le a se c o n ta ct u s o n E d D is c u ssio n .

 GET YOUR EXPERT ANSWER ON STUDYDADDY

 Post your own question
and get a custom answer

 GET ANSWER

 [image: LET'S ORDER THE BEST ASSIGNMENT SERVICES]

 Have a similar question?

 Continue to post
 Continue to edit or attach image(s).

 	
 [image: Fast and convenient]
 Fast and convenient

 Simply post your question and get it answered by professional tutor within 30 minutes. It's as simple as that!

	[image: Any topic, any difficulty]
 Any topic, any difficulty

 We've got thousands of tutors in different areas of study who are willing to help you with any kind of academic assignment, be it a math homework or an article.

	
 [image: 100% Satisfied Students]
 100% Satisfied Students

 Join 3,4 million+ members who are already getting homework help from StudyDaddy!

 	Homework Answers
	Ask a Question
	Become a tutor
	FAQ
	Contact Us
	Privacy Policy
	DMCA
	Terms of Use
	Sitemap

 Copyright © 2024 StudyDaddy.com

 Worbert Limited - All right reserved.

 20 Christou Tsiarta Elma 2, 22, 1077, Nicosia, Cyprus

