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A B S T R A C T

Correctly performed and interpreted statistics play a crucial role for both those who ‘produce’ clinical
research, and for those who ‘consume’ this research. Unfortunately, however, there are many
misunderstandings and misinterpretations of statistics by both groups. In particular, there is a
widespread lack of appreciation for the severe limitations with p values. This is a particular problem with
small sample sizes and low event rates - common features of many published clinical trials. These issues
have resulted in increasing numbers of false positive clinical trials (false ‘discoveries’), and the well-
publicised inability to replicate many of the findings. While chance clearly plays a role in these errors,
many more are due to either poorly performed or badly misinterpreted statistics. Consequently, it is
essential that whenever p values appear, these need be accompanied by both 95% confidence limits and
effect sizes. These will enable readers to immediately assess the plausible range of results, and whether
or not the effect is clinically meaningful.

© 2017 Published by Elsevier Ltd.

EDUCATIONAL AIMS

The reader will come to appreciate:

� How to better interpret commonly used statistics when reading the clinical research literature.
� How to avoid the risk of being misled by poorly performed biostatistics and badly misinterpreted statistics.
� The many ways in which statistics, particularly p values, can mislead.
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INTRODUCTION

For clinicians, statistics are simply the terms, or numbers,
utilised by authors to summarise the results of clinical research
studies. And hopefully, these summary statistics were calculated
and interpreted with the assistance of an expert biostatistician. The
focus of this paper will be on the correct interpretation of
commonly used statistics – and particularly, what to be wary of. As
clinicians, what we need are clear, easily interpreted statistics –

numbers that convey a meaning that cannot be misunderstood. We
want these summary statistics to give us information on a number
of key issues in clinical trials, the majority of which will be the
comparison between two interventions, preferably randomised.
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Essentially, what we need is the following: Firstly, the
‘statistical significance’ of the results – so we can get a sense as
to whether these results are likely to be due to chance – or not.
Secondly, we need an appropriate measure of the effect size
(magnitude of the difference), to enable us to decide whether this
effect size is clinically relevant – or not. Thirdly, we need the
‘margin of error’, or confidence interval, around the best estimate
(ie, the mean difference). Lastly, we want information on the
underlying ‘power’ of the study to detect a meaningful difference
[1–4].

WHAT DO CLINICIANS NEED TO KNOW ABOUT STATISTICS?

This is a frequently asked question, and like most things, it all
depends. If you are a clinician researcher (‘generator’ of evidence)
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the best advice is work closely with an expert biostatistician. And
you need to be working together right from the beginning of your
projects. Rule number one: Don’t wait until you have completed
your data collection, and then consult a statistician to analyse your
data!

If you are a ‘consumer’ of evidence, you must be able to
interpret commonly used statistics in clinical research publica-
tions. These include: p values, the many different measures of
effect size (e.g. absolute risk difference; relative risk), 95%
confidence intervals (CI 95%) and limitations of statistical testing.

While incorrectly analysed and misinterpreted statistics have
resulted in high rates of false positive conclusions, the other major
source is the risk of bias in the research methodology and/or
execution of the study. Risk of bias in published papers is detected
by critical appraisal, utilising validity checklists. This topic will not
be covered here, but it is strongly recommend that the reader
consult one of the many outstanding evidence based medicine
texts [5,6].

DEFINING THE UBIQUITOUS P VALUE

It is important to recall the technical definition of a p value:
Namely, the probability of an observed result (or more extreme
result), given the assumption that the null hypothesis is true [7,8]. The
difficulty lies is translating this definition into something that can
be easily understood [9,10]. Arbitrarily, the threshold for accepting
or rejecting the null hypothesis is when there is a less than one in
20 (p < 0.05) chance that the extreme result observed (or more
extreme results) – would occur, under the assumption there is no
difference. Of crucial importance is the p value you calculate (or
read in the literature), which refers only to your (or their) specific
sample – and on its own, that p value is of strictly limited value
[3]. The observed p value is not necessarily ‘the truth’, and does not
necessarily reflect the true value for the defined ‘population’ of, for
example, all children with asthma. Though, of course, we all live in
hope that our own clinical trial observations are just that!

WHY ARE P VALUES UNDER ATTACK?

Even statisticians agree that making inferences about p values is
‘risky business’ [11]. An excellent summary of some of the
problems with the interpretation of p values is the paper
appropriately entitled: “A dirty dozen: Twelve p value misconcep-
tions” [12]. You may be aware that sadly, a substantial proportion
of the published clinical research cannot be replicated [1]. Indeed,
it has been suggested that up to 50% of the published research is
simply incorrect! [3,13]. Unsurprisingly, errors strongly favour
false positives! For example, the ratio of False Positive to False
Negative publications in epidemiologic studies, especially genetic
epidemiology, is reported to be as high has 100:1 [14,15].

At least some of the blame for this inability to replicate results
has been attributed to misunderstandings about the ever present
‘p value’. This is not a new problem, and indeed the lay press is well
aware of the issue, with newspaper headlines such as: “p-value
misuse running rampant” [16,17]. Erroneous positive conclusions
are particularly likely with the initial publication of a new
intervention – and because of the novelty value (‘newsworthi-
Table 1
Variable interpretation of Type I error.*

P value A. What clinicians believe is risk of
FALSE POSITIVE (FP) or Type I error rate

B. What stat
FALSE POSIT

=0.05 5% 23% 

=0.01 1% 7% 

* Derived from references [3,13].
ness’), it is very likely to be published in a high impact journal and
receive considerable press coverage [18,5].

WHY THE HIGH FALSE POSITIVE ERROR RATE?

Obviously, there are many possible explanations for the high
rate of non-replicable, erroneous research findings [19,20]. Com-
mon examples include: chance, biased methodology, biased study
execution, biased reporting, small sample sizes, low event rates,
mis-use and/or mis-interpretation of p-values, data-mining for the
elusive p < 0.05 value, publication bias, selective reporting of p
values, the ever present ethos of ‘publish or perish’, together with
our human failing – the desire to find support (any support!) for
our pet hypotheses, and, unfortunately, fraud.

IS THERE A NEW UNDERSTANDING OF TYPE I (FALSE POSITIVE)
ERRORS?

Most clinicians have been taught that when p equals 0.05 (or
<0.05), chance is unlikely to explain the extreme result (given the
assumption of ‘no difference’). Consequently, we reject the null
hypothesis in favour of the alternative hypothesis (ie, the
intervention is better than control). Further, we presume that
our risk of making a false positive conclusion is 5% (ie, a 1 in
20 risk). That is, the so-called ‘Type I error’ – or risk of a false
positive conclusion [7]. However, expert statisticians totally
disagree with that interpretation, as outlined in Table 1.To quote
Colquhoun [3]: “If you use p = 0.05 to suggest that you have made a
discovery, you will be wrong at least 30% of the time [Not 5% !]. And
if, as is often the case, experiments are underpowered, you will be
wrong most of the time!” [3,13].

ARE THERE OTHER PROBLEMS WITH P VALUES?

It is important to be aware of how widely p values fluctuate,
from study to study, despite what appears to be similar
experimental conditions. Wide fluctuations are particularly likely
when the sample size is small, with consequent low numbers of
events (such as asthma exacerbations). This is unfortunately a
common feature of most clinical trials [19].

Apart from lack of reproducibility, there are many other
limitations with p values. They are an oversimplification, giving
a black and white, ‘yes or no’ answer to the question posed by the
clinical trial. It clearly illogical to make a different clinical
conclusion between a trial with a result ‘insignificant’ because
p = 0.051, from another we consider ‘significant’ because
p = 0.049. Moreover, p values give no indication of the size of
the difference between the two treatments. Thus, a tiny, clinically
irrelevant difference could be statistically significantly different if
the sample size is very large. Additionally, p values give no
indication of the ‘margin of error’, nor any real information
regarding the power of the study.

ARE P VALUES BEING USED MORE FREQUENTLY?

Despite their bad press, a recent survey of a large number of
Medline abstracts and articles, found that p values are appearing
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isticians calculate as
IVE (FP) or type I error rate

C. If small sample size (low event rate),
FALSE POSITIVE (FP) or Type I error rate

50%
15%
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Table 2
Doing the simple maths for effect size.

Using a simple example, consider a randomised trial of 200 children with asthma,
comparing inhaled corticosteroids (ICS) with placebo. Primary outcome measure;
asthma exacerbations needing oral corticosteroids. Study duration of 12 months.

Results: Eight of the 100 children allocated to ICS had exacerbations (ie, risk of
exacerbation = 8%), while 10 of the 100 allocated to placebo had exacerbations (ie,
risk of exacerbation = 10%).

The simple maths for determining the absolute results and ratios are as follows:
Effect size as Absolutes:
Control (placebo) Event Rate =10%
Experimental (ICS) Event Rate =8%
Absolute Risk Difference [ARD] =10% minus 8% = 2%
Number Needed to Treat [NNT] =1/ARD = 1/2% = 100/2 = 50

Effect size as Ratios:
Relative Risk [Risk Ratio or RR] =8%/10% = 0.8
Relative Risk Reduction [RRR] =1.0 minus RR

=1.0 � 0.8 = 0.2 = 20%

Table 3
Why we need RR & RRR.

From data in Table 2, RCT placebo vs ICS, we can estimate the risk of an acute
exacerbation of asthma:
Placebo Group [CER] =10%
ICS group [EER] =8%
ARD =2%; NNT = 50; RR = 0.80; RRR = 20%;

But it may be clear your individual patient is at HIGHER risk of an exacerbation than
the controls in the RCT.

For example, if we assume your patient has double the 10% baseline risk of controls-
your patient’s baseline risk of an exacerbation is 20%

Therefore:
Since RR [0.8] and RRR [20%] are consistent across risk groups,
And since CER = 20%, so, now EER = 16% [ie, 20% � 0.8 = 16%]

However, absolute values will vary as follows:
Now, ARD = 4%; NNT = 25 [ie, NNT = 1/ARD = 1/4%, or 100/4 = 25]

The clear message demonstrated above is that as the baseline risk increases, ratios
remain constant – but absolute results change. Specifically, the higher the
baseline risk, the lower NNT (and vice versa).
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with greater frequency over time (1990–2015). And of greater
concern, almost all p values reported significant results – while few
included confidence intervals or effect sizes [21,22]. Interestingly,
at least one journal has addressed the problem by totally banning p
values – as well as confidence intervals, and the words ‘significant’
and ‘insignificant’! [23].

So, given that p values are so prone to abuse, misinterpretation
and error, what are the take-home messages? Firstly, it is wise to
maintain a healthy level of scepticism when you see the phrase
“p < 0.05, statistically significant.” Lack of reproducibility and high
rates of false discovery have made the interpretation of hypothesis
testing and p values a major concern [2,9,13,24]. The simple
message appears to be:wait for replication! Clearly, using p values
alone is unsatisfactory, and reporting effect size and Confidence
Intervals (CI 95%) overcomes at least some of the drawbacks with p
values [25,26].

EFFECT SIZE – WHICH ONE IS BEST?

While there are many ways of describing the outcome measures
in a clinical trial, these can be broadly divided into ‘patient
important’ outcome measures and ‘surrogate’ outcome measures
[27]. As a general rule, surrogate outcome measures are numerical
data, such as FEV1, total IgE and serum bicarbonate. Numerical
results will be expressed as a mean difference, or standardised
mean difference (SMD). Surrogate outcomes provide research
efficiency as they are easy to measure, objective, and frequent –

compared to patient important outcomes like hospitalisation or
death.

Clinicians need to take great care with surrogate outcome
measures as these do not necessarily result in a patient important
outcome. There are many examples in the literature where a
surrogate outcome measure has gone in one direction, while the
patient important outcome has gone in the opposite direction. A
classic example is the use of an experimental agent in osteoporosis
patients that improved measured bone mineral density (a
surrogate outcome measure), but an increased risk of fractures
(a patient important outcome measure). Presumably the agent
resulted in more solid but more fragile bones [28]. The advice is
clear: avoid changing your clinical practice on the basis of a
surrogate outcome measure, such as FEV1. It is best to wait until the
intervention is proven to result in an improvement in an outcome
that is valued by the patient.

Patient important outcome measures are usually “yes/no”
answers. That is, binary data, usually expressed as the percentage
that had the outcome of interest/event. For example, in an asthma
study, the difference in the rate of asthma exacerbations,
hospitalisations, or deaths would be compared between two
interventions. This data will normally be presented as relative risk
or risk ratio (RR), and Relative Risk Reduction (RRR).

SHOULD WE USE ABSOLUTE EFFECT SIZE OR RATIO – OR BOTH?

Clinicians and patients (parents) find it far easier to understand
absolute values (eg Number needed to treat: NNT), while ratios can
be confusing and misleading. Moreover, RRR invariably suggests an
exaggerated effect size - the statistic most frequently used in
pharmaceutical company advertisements [29,30] [Table 2]. So, why
do we bother working out RR and RRR, and why are these statistics
traditionally used in results? The reason is that these ratios are
consistent across different risk groups. Thus, ratios can be applied
to patients with different baseline risks of the outcome to those
patients in the clinical trial. For example it may be quite obvious
that your patient with asthma is more severe, and at a substantially
higher risk (eg double the 10% control group risk, or 20%) of an
exacerbation compared to the average patient in the randomised
trial. If so, simply apply the relative risk and RRR from the
published trial to your individual patient. Similarly, if it is clear that
your patient is less severe, and at a lower risk (eg, half the 10% risk,
or 5%) of an exacerbation than the patients in the clinical trial, you
can use the RR and RRR, and apply it to your individual patient [31]
[Table 3].

WHEN IT IS APPROPRIATE TO USE A HAZARD RATIO?

A statistical term you will sometimes see in place of relative risk
is a hazard ratio [HR]. A HR is derived from a survival analysis of a
clinical trial, and the hazard ratio is simply the relative risk,
averaged over the duration of the trial [32]. It is interpreted in
exactly the same way as a relative risk, the further the HR he is
away from 1.0, the greater the effect size. If the 95% CI around the
hazard ratio crosses 1.0 (ie, the line of no effect) then the result is
consistent with no difference (null hypothesis). For example, if the
HR = 0.76 and CI 95 = 0.64 to 1.13, then the p > 0.05 is not
significant. If a HR is quoted, expect to see survival curves,
comparing the ‘survival’ (or time to event) in the experimental
intervention to the control.

WHEN TO USE ODDS RATIOS?

While RR and HR are the appropriate effect size measures in
randomised controlled trials and cohorts studies, in case-control
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studies the true risk (or incidence) is unknown [33]. Therefore, we
cannot calculate a true relative risk. Instead, we calculate the odds
ratio, a rough approximation of the RR. The Odds Ratio is the odds
of the relevant exposure (intervention) in the cases, compared to
the odds of the exposure in the controls.

WHAT DO 95% CONFIDENCE INTERVALS (CI 95%) ADD?

Clinicians traditionally use a pragmatic (though not strictly
true) interpretation of CI 95%: Namely, “we are 95% ‘confident’ the
true result will be somewhere between the CI 95% limits”
[34]. However, the individual study CI 95% relates specifically to
that observation – and assumes the study was correctly performed
– ie, adequately powered, numerous events, no confounding
influences, no risk of bias and was appropriately analysed. Clearly,
these are not common features of clinical trials! So, a qualified (but
probably unrealistic) definition is more accurate: “in correctly
performed studies we would expect the CI 95% to include the true
value 95 percent of the time.” [35,36,37].

Confidence Intervals address a number of the deficiencies with
p-values. In particular, 95% confidence intervals give us a plausible
or likely range of the effect size. In lay terms, CI 95% is the ‘the
margin of error’, around our best estimate (ie, the mean or point
estimate). Confidence intervals also supply valuable information
regarding the power of the study; the narrower the width of the
confidence interval, the better – ie, the more precise the results.
While study power depends upon sample size, more important are
the number of events observed.

A direct estimate of the p value can be derived from the
confidence intervals. Forexample, if in a randomised trial (Treatment
A vs Treatment B), the effect measure is Relative Risk (RR) of
hospitalisation, and our observed 95% confidence interval includes a
Relative Risk on 1.0, for example: RR = 0.97, CI 95% = 0.78 to 1.22, we
will interpretthisresultasnot statisticallysignificant (p > 0.05,NS)–
so, we accept the null hypothesis. However, this result leaves
clinicians with uncertainty, because at one extreme of the CI 95%,
treatment A results in a reduction in hospitalisation (lower boundary
of the CI 95% = 0.78; or a Relative Risk Reduction of 22%); but at the
other extreme of the CI 95%, treatment A results in an increase in the
risk of hospitalisation (upper boundary of the CI 95% = 1.22; or a
Relative Risk Increase of 22%). Consequentially, when the CI 95%
interval offers a different clinical decision at the extremes of the CI
95%, we are left with uncertainty re clinical decision making – in
short, the study is underpowered!

If the primary outcome measure is numerical, for example the
difference in FEV1 between two randomised treatments, and if the
95% confidence interval includes zero, then again, we conclude the
result is not statistically significant (eg, Mean FEV1 difference =
+7%, CI 95% minus 3% to plus 17%; p > 0.05. NS). Again, at the
extremes of the CI 95% a totally different decision is offered.
Despite the valuable additional information with CI 95%, interpre-
tation of CI 95% still relies on the troublesome, close relationship
with p values, and the dichotomous decisions re ‘significant’ vs
‘non-significant’ [38].

STATISTICAL ISSUES WITH DIFFERENT STUDY TYPES

Randomised controlled trials

The major statistical issues are the problems with interpreta-
tion of the p value, as outlined above. In particular, one should be
especially wary of the initial study of a new intervention
[39]. Erroneous conclusions are particularly prominent with the
initial publication of randomised trials of a novel intervention.
You’ll recognise these articles: Always strongly positive, often with
implausibly large effect sizes, published in a high impact medical
journal, and given extensive media coverage. Unfortunately, these
results are also likely to be subsequently proven to be either
incorrect, or at best, to have a highly inflated effect size. This is
what has been termed “regression to the truth”! [40]. Because of
the well-known high risk of error in the initial study, it is wise to
wait for replication – in a separate setting, and ideally in a study
that has a total of at least 300 (patient important) events [41].

Systematic reviews/meta-analyses

The two key statistical issues are related to heterogeneity
(inconsistency) and publication bias.

Heterogeneity
Statistical heterogeneity is currently best expressed as the I2

statistic. This statistic gives a numerical score of the extent of
variation in results between studies, expressed as a percentage
from 0 to 100% [42]. The lower the percentage the better, ideally 0%
– indicates no heterogeneity (other than by chance alone). An
I2 > 75% indicates a large amount of heterogeneity, and your level
of confidence in the results will be necessarily lowered. If I2

approaches 100%, the heterogeneity is so great that statistical
pooling is probably not warranted. Readers can get a quick
qualitative estimate of this variation by simply eyeballing the
forest plot – specifically looking to see whether or not the 95%
confidence intervals for the multiple trials are overlapping. If all
the CI 95%s overlap, the variation between studies should not be of
concern, and this will be reflected in a low I2.

Publication bias
Non-publication of negative studies is a major, predictable risk

in every systematic review, resulting in an inflated pooled effect
size [43]. This bias is best detected by carefully reading the
methodology to ensure the authors have done a comprehensive
search, ideally including contacting authors in the field, hand
searching, and checking out the ‘grey literature’. Visual inspection
of the degree of symmetry of the ‘funnel plot’ will give an
indication of whether there are obvious ‘missing’ negative trials.
However, unless there are a reasonable number of trials, it is not
possible to generate a meaningful funnel plot [44]. Various
statistical tests have also been developed to evaluate the risk of
publication bias, but these will not be covered here [45].

The other statistical issue surrounds the method of combining
data from the individual studies (ie, the ‘meta-analysis’). Two
methods are available: the fixed effects model, and the random
effects model [46]. There is considerable controversy about which
method is best, and in which situations each should be performed.
Currently, the research world remains divided and some authors
will report both analyses to give readers their choice.

Cohort studies

Although observational studies are clearly less reliable for
clinical decision-making, in the absence of high quality studies
(randomised controlled trials) these may represent the best
available evidence. The key statistical issue is the inevitable
difference between those exposed and non-exposed to the
exposure of interest [47].

For example, we could consider a cohort study to test whether
exposure to inhaled corticosteroids [ICS] could increase the risk of
Community Acquired Pneumonia [CAP]. In this setting, there will
always be additional risk factors, for example age, gender, socio-
economic status, exposure to environmental tobacco smoke, co-
morbidities, and disease severity, which will not be evenly
balanced between exposed and non-exposed groups. These
unevenly distributed risk factors (‘confounders’) are associated
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with the outcome of interest (e.g. CAP), and will interfere with our
ability to determine the true association between the exposure
(ICS) and the outcome of interest (CAP). Consequently, these
additional potential risk factors must be identified, accurately
measured, and statistically “controlled for” (ie, adjusted). Obvi-
ously, this statistical adjustment is not as effective as randomisa-
tion, and unknown/un-measured risk factors (eg, genetic risk
factors) cannot be controlled.

This means when you read the results of a cohort study, the
focus must be on the adjusted Relative Risk [aRR], and not the ‘raw’

(unadjusted) RR. Because of the risks of bias, your level of
confidence in the results from a cohort study will necessarily be
less than that of a well-conducted RCT.

Case-control studies

These are inherently biased studies, and not generally useful for
clinical decision-making [33]. However, they are important for
hypothesis generation, before more definitive and expensive
studies are justified. Moreover, for rare diseases, or harmful
exposures, case control studies usually represent the only available
evidence.

The major problem with these studies is in the methodology
rather than with the statistical analysis. Obtaining accurate
exposure status in both the cases and the controls is prone to
error and is usually biased. In addition, there are major issues with
accurate measurement of additional risk factors (confounders),
preventing effective statistical control (adjustment) for the many
predictable differences between cases and controls. Consequently,
these studies have a history of being misleading.

DIRECTIONS FOR FUTURE RESEARCH

It is clear that there are some major statistical problems with
hypothesis testing, and in particular, p values. While 95%
confidence intervals [CI 95%] around effects size [eg, Relative
Risk] supplies important addition information, CI 95% and p values
are closely linked, and suffer from similar problems relating to the
interpretation of whether they are ‘significant or not significant’.

An approach, which is not new, but is now more feasible with
the increasing sophistication of computing, is “Bayesian statistics”
[17,48]. The beauty of Bayes’ theory is that it makes use of all pre-
existing knowledge/data concerning the hypothesis being tested.
The downside however is that Bayes theory assumes there will be
pre-existing data to enable investigators to factor in an estimate of
the probability of the hypothesis being correct vs. incorrect.

In the meantime, the researcher should address measures to
improve the accuracy of clinical research, as summarised in
Table 4. There is no doubt that p values will continue to be utilised
Table 4
Possible measures to reduce erroneous research.*

Research culture/research methods:
Registration of study protocols
Large-scale collaborative research
Improve quality of study design/methodology
Standardize outcome measures
Improve peer review, reporting, and dissemination of research
Educate scientific workforce in methods and statistical literacy

Statistical issues:
Ensure expert statistical support
More appropriate statistical methods
Increase thresholds for claiming discoveries or “successes”

Conflict of Interest (“Spin”)
Containment of conflicted sponsors and authors

* Modified from Ionnadis et al. [20].
to estimate the role of chance. There is nothing inherently wrong
with p values – it is their misuse and mis-interpretation that has
given them their notoriety [49].

EDUCATIONAL ARTICLE

You can receive 1 CME credit by successfully answering these
questions online.

(A) Visit the journal CME site at http://www.prrjournal.com.
(B) Complete the answers online, and receive your final score upon

completion of the test.
(C) Should you successfully complete the test, you may download

your accreditation certificate (subject to an administrative
charge), accredited by the European Board for Accreditation in
Pneumology.
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