Programming Assignment

Performance Comparison: Recursive Fibonacci

Amir Mirzaeinia

CSCE @ UNT

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance

@ Assignment Overview
© Assignment Tasks

© Understanding Recursion
@ Starter Code

© Important Notes

@ Expected Results

@ Deliverables

© Tips & Resources

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance

Assignment Overview

Objective

Compare execution performance between low-level C and high-level Python programming
languages using a recursive Fibonacci implementation.

What You'll Learn

@ Performance differences between compiled and interpreted languages
@ Trade-offs between development speed and execution speed
@ When to choose C vs Python for different tasks

@ Impact of language-level abstractions on performance

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 3/26

Assignment Tasks

Part 1: Implementation Part 2: Performance Analysis
© Implement Fibonacci function @ Compare C vs Python performance
recursively in C @ Document your findings in a report

@ Implement Fibonacci function
recursively in Python

@ Calculate fibonacci(50)

@ Measure execution time for both

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance

What is Recursion?

Definition

Recursion is a programming technique where a function calls itself to solve a problem by
breaking it down into smaller, similar subproblems.

Key Components

© Base Case: The simplest case that can
be solved directly (stops recursion)

@ Recursive Case: Calls the function with
a simpler input

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance

Recursion: The Concept

£ib(4) -3
e N
£ib(3) 42 £ib(2) —1
/N VRN
£ib(2)| fib(1)=t | fib(1)< £ib(0)=0
|fib(£fib(o)=o|

Notice: Many function calls! fibonacci(2) called twice, fibonacci(1) called three times!

Amir Mirzaeinia (CSCE @ UNT)

C vs Python Performance

Fibonacci: Mathematical Definition

What is Fibonacci Sequence?

The Fibonacci sequence is a series where each number is the sum of the two preceding ones: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

[terative View Recursive Definition

F(0) =0 0 ifn=0
Fly=1 F(n) =41 Fa=1
FE)=0+1=1 F(n—1)+F(n—2) ifn>1
FB)=1+1=2
F4)=1+2=3 Example: F(5) = F(4) + F(3)
F(5)=2+3=5

v

@ F(0)=0, F(1) =1
@ F(5) =5, F(10) = 55
@ F(20) = 6, 765, F(30) = 832, 040

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 7/26

ing Recursive Fibonacci

Step 1: ldentify Base Cases Step 2: Identify Recursive Case
The simplest cases that don't require recursion: How to reduce the problem to simpler versions:

@ For Fibonacci: When n = 0, answer is 0 @ For Fibonacci: F(n) = F(n — 1) + F(n — 2)

@ When n =1, answer is 1 @ Each call handles two smaller subproblems

@ These prevent infinite recursion

Template Pattern

function recursive_function(input):

' if (base_case_condition_1):

; return base_case_value_1

if (base_case_condition_2):

: return base_case_value_2

» else:

return combine(recursive_function(smaller_1),
: recursive_function(smaller_2))

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance

Implementation: C Language

unsigned long long fibomnacci(int n) {

! // Step 1: Base cases - stop recurstion
: if (n == 0) {
return O;
. X
, if (n == 1) {
return 1;
: }
: // Step 2: Recursive case - sum of two previous numbers
» return fibonacci(m - 1) + fibonacci(n - 2);

o fibonacci(5) calls fibonacci(4) and fibonacci(3)

e Each of those calls itself recursively

e Continues until reaching base cases (fibonacci(0) or fibonacci (1))
o Results bubble back up: F(5) = F(4) + F(3) =3+2=5

Amir Mirzaeinia (CSCE @ C vs Python Performance

Implementation: Python Language

def fibonacci(n):

' # Step 1: Base cases - stop Tecursion
if n == 0:
return O
. if n == 1:
: return 1
Step 2: Recurstive case - sum of two previous numbers
return fibonacci(n - 1) + fibonacci(n - 2)

Key Differences from C

No type declarations needed (dynamic typing)

Python automatically handles arbitrarily large integers
Syntax is more concise

But: Function call overhead is MUCH higher!

Warning: Recursive Fibonacci is exponentially slow in both languages!
Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 10 /26

Tracing Recursive Execution

Example: fibonacci(4)
@ Call fibonacci (4)

o Not base case, so call fibonacci(3) and fibonacci(2)
@ Call fibonacci(3)

o Call fibonacci(2) and fibonacci(1)
@ Call fibonacci(2)

o Call fibonacci(1) and fibonacci(0)

@ fibonacci(l) returns 1, fibonacci(0) returns 0

© fibonacci(2) gets1 +0=1

O fibonacci(3) gets fibonacci(2) + fibonacci(l) =1+ 1 =2
@ fibonacci(4) gets fibonacci(3) + fibonacci(2) =2 +1 =3

Final Result: 3

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 11/26

Common Recursion Mistakes

Mistake 1: Missing or Wrong Base Case

@ Problem: Infinite recursion, stack overflow
@ Example: Forgetting if (n == 0 || n == 1) return 1;

@ Result: Program crashes with "stack overflow” error

Mistake 2: Not Making Problem Smaller

@ Problem: Infinite recursion
@ Example: Calling factorial(n) instead of factorial(n-1)

@ Result: Never reaches base case

Mistake 3: Integer Overflow (C only)

@ Problem: Result too large for data type
@ Example: Using int instead of unsigned long long

@ Result: Wrong answer (overflow wraps around)

= - = = = et

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 12 /26

Starter Code: C Implementation

|#include <stdio.h>

 |#include <time.h>

| // TODO: Implement recursive fibonacct function

- |unsigned long long fibonacci(int n) {

. // Your code here

: // Base case 1: if n == 0, return ?, Base case 2: if n == 1,
return ?

// Recursive case: return ?

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance

Starter Code: C Implementation (Continued)

int main() {
int n = 50;
clock_t start, end;
double cpu_time_used;
start = clock();
unsigned long long result
end = clock();
cpu_time_used = ((double)

= fibonacci(n);

(end - start)) / CLOCKS_PER_SEC;

printf ("Fibonacci (%d) = %1lu\n", n, result);

printf ("Time taken: %f seconds\n",

return O0;

cpu_time_used);

Amir Mirzaeinia (CSCE @ UNT)

C vs Python Performance

14 /26

Starter Code: C Implementation (Continued)

Compilation Instructions

To compile:
gcc -o factorial factorial.c
To run:

./factorial

Tips for C Implementation
@ Use unsigned long long for the return type
Base case 1: if (n == 0) return O;

Base case 2: if (n == 1) return 1;

Use clock() from time.h for timing
Warning: This will be SLOW for n=50! That's the point!

o
o
@ Recursive case: return fibonacci(n - 1) + fibonacci(n - 2);
o
o

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 15 /26

Starter Code: Python Implementation

import time
TODO: Implement recursive fibonacct function
def fibonacci(n):

nann

: Calculate nth Fibomacct number recursively
) Args:
n: Non-negative integer

Returns:
» nth Fibonacct number

nann
Your code here
Base case 1: 2f n
Base case 2: if n ==
Recursive case: T
; pass

== 0, return °?
1, return ?

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance

Starter Code: Python Implementation

if name == "__main_

! n = 50

start_time = time.time ()
. result = fibonacci(n)
: end_time = time.time ()

execution_time = end_time - start_time

) print (f"Fibonacci ({n}) = {resultl}")
print (f"Time taken: {execution_time:.6f} seconds")

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 17/26

tation (Continued)

Execution Instructions

To run:

python3 factorial.py

Tips for Python Implementation

@ Python handles large integers automatically
Base case 1: if n == 0: return O

Base case 2: if n == 1: return 1

Use time.time () for timing measurements

No recursion limit issues for n=50 (not deep enough)

o
o
@ Recursive case: return fibonacci(n - 1) + fibonacci(n - 2)
o
o
o

Warning: This will be VERY SLOW! Expect several seconds/minutes/hours (depends on your device)!

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 18 /26

Important Notes

WARNING About This Implementation

This recursive approach is intentionally inefficient for computing Fibonacci. There are much
more efficient methods:

o Iterative approach: O(n) time, O(1) space - MUCH faster!

o ...
You will learn these optimized approaches in your Algorithm Design course.

v

Purpose of This Assignment

The goal is NOT to write the best Fibonacci algorithm, but rather to:

@ Observe performance differences between C and Python
@ Understand the impact of compiled vs interpreted execution

© Appreciate the trade-offs in language selection

@ Experience exponential time complexity firsthand!

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 19 /26

Why Recursive? Why Fibonacci?

Why Recursive Implementation?
@ Tests function call overhead
@ Fibonacci makes MANY repeated calls

@ More expensive in Python (dynamic
typing, interpreter overhead)

@ Magnifies performance differences
dramatically

@ Shows exponential time complexity

Why Fibonacci?

@ Simple algorithm everyone can
understand

@ Exponential number of recursive calls
(27)
@ Performance differences are huge!

@ Demonstrates one difference between
higher level and lower level language

fibonacci(40) makes over 330 million function calls!
fibonacci(50) would make over 40 billion calls! (Too slow to run!)

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 20/26

Expected Results

Performance Expectations

You should observe:

e C will be significantly faster (10-100x faster typical)

@ C’s compiled nature eliminates interpretation overhead

@ Python's dynamic typing adds runtime checks
o Function call overhead is much higher in Python

Example Timing (Approximate)

Language Typical Time for fibonacci(50)
C (compiled with -02) ~ 0.3 - 1.0 seconds
Python (interpreted) ~ 30 - 60 seconds(minutes)
Speed Difference 50-100x faster in C!

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance

21/26

What to Submit

Required Files

@ fibonacci.c - Your C implementation
@ fibonacci.py - Your Python implementation
© report.pdf - Your analysis report (2-3 pages)

Report Contents

Your report should include:

@ Implementation description: Brief explanation of your code
Testing methodology: How you measured performance

Results: Table/graph showing timing data (multiple runs!)

Trade-offs: When would you choose Python despite being slower?

o
o
@ Analysis: Why C is faster, discuss exponential growth
o
(]

Verification: Show both produce correct result (fibonacci(50) = 102,334,155)

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 22/26

Grading Rubric

Component Points
C implementation (correct & recursive) 25
Python implementation (correct & recursive) 25
Performance measurements (accurate timing) 20
Analysis & comparison (insightful discussion) 20
Code quality & documentation 10
Total 100

Due Date
Check your course syllabus or LMS for the exact due date and submission instructions.

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance

Tips for Success

Debugging Tips
Test with small values first (fibonacci(5), fibonacci(10))
Verify correctness: fibonacci(5) = 5, fibonacci(10) = 55, fibonacci(20) = 6,765

Use printf (C) or print (Python) to trace recursive calls

Don’t test with large values immediately! fibonacci(50) takes timel!

If base cases are wrong, you'll get incorrect results or infinite recursion

Performance Measurement Tips

@ Run each program multiple times (3-5 iterations for fibonacci(50))
Calculate average time to reduce measurement noise

Close other applications to minimize system interference

(]

o

@ Use the same hardware for both measurements

@ Be patient! fibonacci(50) in Python takes 30-60 seconds/Minutes/Hours(depending on your device)
o

Consider testing smaller values first (fibonacci(35) is faster)

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 24 /26

Common Pitfalls to Avoid

Common Mistakes
@ Wrong base cases: Must handle BOTH n=0 AND n=1
o fibonacci(0) = 0, fibonacci(1) = 1 (not both 1!)
@ Missing base case: Causes infinite recursion and stack overflow
© Testing with n=50: Too slow! Use n=40 or smaller
o fibonacci(50) in Python could take hours!
© Only running once: fibonacci(40) times vary, need multiple runs
© Comparing debug C vs Python: Always compile C with optimizations

o Use: gcc -02 -o fibonacci fibonacci.c

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance

Questions?

Contact your instructor or TA during office hours

Good luck and have fun with your assignment!

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance

	Assignment Overview
	Assignment Tasks
	Understanding Recursion
	Starter Code
	Important Notes
	Expected Results
	Deliverables
	Tips & Resources

