
Programming Assignment
Performance Comparison: Recursive Fibonacci

Amir Mirzaeinia

CSCE @ UNT

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 1 / 26

Outline

1 Assignment Overview

2 Assignment Tasks

3 Understanding Recursion

4 Starter Code

5 Important Notes

6 Expected Results

7 Deliverables

8 Tips & Resources

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 2 / 26

Assignment Overview

Objective

Compare execution performance between low-level C and high-level Python programming
languages using a recursive Fibonacci implementation.

What You’ll Learn

Performance differences between compiled and interpreted languages

Trade-offs between development speed and execution speed

When to choose C vs Python for different tasks

Impact of language-level abstractions on performance

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 3 / 26

Assignment Tasks

Part 1: Implementation

1 Implement Fibonacci function
recursively in C

2 Implement Fibonacci function
recursively in Python

3 Calculate fibonacci(50)

4 Measure execution time for both

Part 2: Performance Analysis

1 Compare C vs Python performance

2 Document your findings in a report

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 4 / 26

What is Recursion?

Definition

Recursion is a programming technique where a function calls itself to solve a problem by
breaking it down into smaller, similar subproblems.

Key Components

1 Base Case: The simplest case that can
be solved directly (stops recursion)

2 Recursive Case: Calls the function with
a simpler input

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 5 / 26

Recursion: The Concept

fib(4)

fib(3) fib(2)

fib(2) fib(1)=1 fib(1)=1fib(0)=0

fib(1)=1fib(0)=0

= 3

= 2 = 1

= 1

Notice: Many function calls! fibonacci(2) called twice, fibonacci(1) called three times!

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 6 / 26

Fibonacci: Mathematical Definition

What is Fibonacci Sequence?
The Fibonacci sequence is a series where each number is the sum of the two preceding ones: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Iterative View

F (0) = 0

F (1) = 1

F (2) = 0 + 1 = 1

F (3) = 1 + 1 = 2

F (4) = 1 + 2 = 3

F (5) = 2 + 3 = 5

Recursive Definition

F (n) =


0 if n = 0

1 if n = 1

F (n − 1) + F (n − 2) if n > 1

Example: F (5) = F (4) + F (3)

Examples
F (0) = 0, F (1) = 1

F (5) = 5, F (10) = 55

F (20) = 6, 765, F (30) = 832, 040

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 7 / 26

Step-by-Step: Implementing Recursive Fibonacci

Step 1: Identify Base Cases
The simplest cases that don’t require recursion:

For Fibonacci: When n = 0, answer is 0

When n = 1, answer is 1

These prevent infinite recursion

Step 2: Identify Recursive Case
How to reduce the problem to simpler versions:

For Fibonacci: F (n) = F (n − 1) + F (n − 2)

Each call handles two smaller subproblems

Template Pattern

1 function recursive_function(input):

2 if (base_case_condition_1):

3 return base_case_value_1

4 if (base_case_condition_2):

5 return base_case_value_2

6 else:

7 return combine(recursive_function(smaller_1),

8 recursive_function(smaller_2))

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 8 / 26

Implementation: C Language

1 unsigned long long fibonacci(int n) {

2 // Step 1: Base cases - stop recursion

3 if (n == 0) {

4 return 0;

5 }

6 if (n == 1) {

7 return 1;

8 }

9 // Step 2: Recursive case - sum of two previous numbers

10 return fibonacci(n - 1) + fibonacci(n - 2);

11 }

How It Works
1 fibonacci(5) calls fibonacci(4) and fibonacci(3)

2 Each of those calls itself recursively

3 Continues until reaching base cases (fibonacci(0) or fibonacci(1))

4 Results bubble back up: F (5) = F (4) + F (3) = 3 + 2 = 5

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 9 / 26

Implementation: Python Language

1 def fibonacci(n):

2 # Step 1: Base cases - stop recursion

3 if n == 0:

4 return 0

5 if n == 1:

6 return 1

7 # Step 2: Recursive case - sum of two previous numbers

8 return fibonacci(n - 1) + fibonacci(n - 2)

Key Differences from C

No type declarations needed (dynamic typing)

Python automatically handles arbitrarily large integers

Syntax is more concise

But: Function call overhead is MUCH higher!

Warning: Recursive Fibonacci is exponentially slow in both languages!
Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 10 / 26

Tracing Recursive Execution

Example: fibonacci(4)

1 Call fibonacci(4)

Not base case, so call fibonacci(3) and fibonacci(2)

2 Call fibonacci(3)

Call fibonacci(2) and fibonacci(1)

3 Call fibonacci(2)

Call fibonacci(1) and fibonacci(0)

4 fibonacci(1) returns 1, fibonacci(0) returns 0

5 fibonacci(2) gets 1 + 0 = 1

6 fibonacci(3) gets fibonacci(2) + fibonacci(1) = 1 + 1 = 2

7 fibonacci(4) gets fibonacci(3) + fibonacci(2) = 2 + 1 = 3

Final Result: 3

Note: Many repeated calculations! fibonacci(2) computed 2 times!Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 11 / 26

Common Recursion Mistakes

Mistake 1: Missing or Wrong Base Case
Problem: Infinite recursion, stack overflow

Example: Forgetting if (n == 0 || n == 1) return 1;

Result: Program crashes with ”stack overflow” error

Mistake 2: Not Making Problem Smaller
Problem: Infinite recursion

Example: Calling factorial(n) instead of factorial(n-1)

Result: Never reaches base case

Mistake 3: Integer Overflow (C only)
Problem: Result too large for data type

Example: Using int instead of unsigned long long

Result: Wrong answer (overflow wraps around)

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 12 / 26

Starter Code: C Implementation

1 #include <stdio.h>

2 #include <time.h>

3 // TODO: Implement recursive fibonacci function

4 unsigned long long fibonacci(int n) {

5 // Your code here

6 // Base case 1: if n == 0, return ?, Base case 2: if n == 1,

return ?

7 // Recursive case: return ?

8 }

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 13 / 26

Starter Code: C Implementation (Continued)

1 int main() {

2 int n = 50;

3 clock_t start , end;

4 double cpu_time_used;

5 start = clock();

6 unsigned long long result = fibonacci(n);

7 end = clock();

8 cpu_time_used = ((double)(end - start)) / CLOCKS_PER_SEC;

9 printf("Fibonacci (%d) = %llu\n", n, result);

10 printf("Time taken: %f seconds\n", cpu_time_used);

11 return 0;

12 }

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 14 / 26

Starter Code: C Implementation (Continued)

Compilation Instructions
To compile:

gcc -o factorial factorial.c

To run:

./factorial

Tips for C Implementation
Use unsigned long long for the return type

Base case 1: if (n == 0) return 0;

Base case 2: if (n == 1) return 1;

Recursive case: return fibonacci(n - 1) + fibonacci(n - 2);

Use clock() from time.h for timing

Warning: This will be SLOW for n=50! That’s the point!

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 15 / 26

Starter Code: Python Implementation

1 import time

2 # TODO: Implement recursive fibonacci function

3 def fibonacci(n):

4 """

5 Calculate nth Fibonacci number recursively

6 Args:

7 n: Non -negative integer

8 Returns:

9 nth Fibonacci number

10 """

11 # Your code here

12 # Base case 1: if n == 0, return ?

13 # Base case 2: if n == 1, return ?

14 # Recursive case: return ?

15 pass

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 16 / 26

Starter Code: Python Implementation

1 if __name__ == "__main__":

2 n = 50

3

4 start_time = time.time()

5 result = fibonacci(n)

6 end_time = time.time()

7

8 execution_time = end_time - start_time

9

10 print(f"Fibonacci ({n}) = {result}")

11 print(f"Time taken: {execution_time :.6f} seconds")

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 17 / 26

Starter Code: Python Implementation (Continued)

Execution Instructions

To run:

python3 factorial.py

Tips for Python Implementation
Python handles large integers automatically

Base case 1: if n == 0: return 0

Base case 2: if n == 1: return 1

Recursive case: return fibonacci(n - 1) + fibonacci(n - 2)

Use time.time() for timing measurements

No recursion limit issues for n=50 (not deep enough)

Warning: This will be VERY SLOW! Expect several seconds/minutes/hours (depends on your device)!

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 18 / 26

Important Notes

WARNING About This Implementation

This recursive approach is intentionally inefficient for computing Fibonacci. There are much
more efficient methods:

Iterative approach: O(n) time, O(1) space - MUCH faster!

...

You will learn these optimized approaches in your Algorithm Design course.

Purpose of This Assignment

The goal is NOT to write the best Fibonacci algorithm, but rather to:

1 Observe performance differences between C and Python

2 Understand the impact of compiled vs interpreted execution

3 Appreciate the trade-offs in language selection

4 Experience exponential time complexity firsthand!

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 19 / 26

Why Recursive? Why Fibonacci?

Why Recursive Implementation?

Tests function call overhead

Fibonacci makes MANY repeated calls

More expensive in Python (dynamic
typing, interpreter overhead)

Magnifies performance differences
dramatically

Shows exponential time complexity

Why Fibonacci?

Simple algorithm everyone can
understand

Exponential number of recursive calls
(2n)

Performance differences are huge!

Demonstrates one difference between
higher level and lower level language

Fun Fact

fibonacci(40) makes over 330 million function calls!
fibonacci(50) would make over 40 billion calls! (Too slow to run!)

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 20 / 26

Expected Results

Performance Expectations

You should observe:

C will be significantly faster (10-100x faster typical)

C’s compiled nature eliminates interpretation overhead

Python’s dynamic typing adds runtime checks

Function call overhead is much higher in Python

Example Timing (Approximate)

Language Typical Time for fibonacci(50)
C (compiled with -O2) ∼ 0.3 - 1.0 seconds
Python (interpreted) ∼ 30 - 60 seconds(minutes)

Speed Difference 50-100x faster in C!

Note: Actual times vary by hardware, OS, and compiler/interpreter version

Why so slow? fibonacci(40) makes over 330 million recursive calls!

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 21 / 26

What to Submit

Required Files
1 fibonacci.c - Your C implementation

2 fibonacci.py - Your Python implementation

3 report.pdf - Your analysis report (2-3 pages)

Report Contents
Your report should include:

Implementation description: Brief explanation of your code

Testing methodology: How you measured performance

Results: Table/graph showing timing data (multiple runs!)

Analysis: Why C is faster, discuss exponential growth

Trade-offs: When would you choose Python despite being slower?

Verification: Show both produce correct result (fibonacci(50) = 102,334,155)

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 22 / 26

Grading Rubric

Component Points
C implementation (correct & recursive) 25
Python implementation (correct & recursive) 25
Performance measurements (accurate timing) 20
Analysis & comparison (insightful discussion) 20
Code quality & documentation 10

Total 100

Due Date

Check your course syllabus or LMS for the exact due date and submission instructions.

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 23 / 26

Tips for Success

Debugging Tips
Test with small values first (fibonacci(5), fibonacci(10))

Verify correctness: fibonacci(5) = 5, fibonacci(10) = 55, fibonacci(20) = 6,765

Use printf (C) or print (Python) to trace recursive calls

Don’t test with large values immediately! fibonacci(50) takes time!

If base cases are wrong, you’ll get incorrect results or infinite recursion

Performance Measurement Tips
Run each program multiple times (3-5 iterations for fibonacci(50))

Calculate average time to reduce measurement noise

Close other applications to minimize system interference

Use the same hardware for both measurements

Be patient! fibonacci(50) in Python takes 30-60 seconds/Minutes/Hours(depending on your device)

Consider testing smaller values first (fibonacci(35) is faster)

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 24 / 26

Common Pitfalls to Avoid

Common Mistakes
1 Wrong base cases: Must handle BOTH n=0 AND n=1

fibonacci(0) = 0, fibonacci(1) = 1 (not both 1!)

2 Missing base case: Causes infinite recursion and stack overflow
3 Testing with n=50: Too slow! Use n=40 or smaller

fibonacci(50) in Python could take hours!

4 Only running once: fibonacci(40) times vary, need multiple runs
5 Comparing debug C vs Python: Always compile C with optimizations

Use: gcc -O2 -o fibonacci fibonacci.c

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 25 / 26

Questions?

Questions?

Contact your instructor or TA during office hours

Good luck and have fun with your assignment!

Amir Mirzaeinia (CSCE @ UNT) C vs Python Performance 26 / 26

	Assignment Overview
	Assignment Tasks
	Understanding Recursion
	Starter Code
	Important Notes
	Expected Results
	Deliverables
	Tips & Resources

