

 STUDYDADDY
 	How it Works
	Homework Answers
	
 Ask a Question
	Top Tutors
	FAQ
	Sign in

 StudyDaddy

 Article Writing
 SQL injection attacks- Paper and PPT SQL injection attacks- Paper and PPT

 A Taxonomy of SQL Injection Detection and Prevention Techniques Amirmohammad Sadeghian, Mazdak Zamani, Azizah Abd. Manaf Advanced Informatics School Universiti Teknologi Malaysia Kuala Lumpur , Malaysia , , Abstract — While using internet for proposing online services is increasing every day, security threats in the web also increased dramatically. One of the most serious and dangerous web application vulnerabilities is SQL injection. SQL injection attack took place by inserting a portion of malicious SQL query through a non-validated input from the user into the legitimate query statement. Consequently database management system will execute these commands and it leads to SQL injection. A successful SQL injec tion attack interfere Confidentiality, Integrity and availability of information in the database. Based on the statistical research es this type of attack had a high impact on business . Finding the proper solution to stop or mitigate the SQL injection is necessary. To address this problem security researchers introduce different techniques to develop secure codes, prevent SQL injection attacks and detect them. In this paper we present a comprehensive review of different types of SQL injection detection and p revention techniques. We criticize strengths and w eaknesses of each technique. Such a structural classification would further help other researchers to choose the right technique for the further studies. Keywords - SQL injection; Web application vulnerability; Information security; I. INTRODUCTION Structured Query Language injection is a code injection technique that used to attack database driven web application . In this attack the attacker inserts a portion of SQL statement via not sanitized user input para meters into the original SQL query and passes them to database server [1]. Based on Open Web Application Security Project (OWASP) studies , SQL injection has the first position in the top 10 list of web application vulnerabilities [2] . The targets of these attacks are not only limited to the web application but they also can hits desktop applications which their databases are powered by SQL. The amount of financial losses in result of SQL Injection was enormous, therefore finding a solution to stop SQL Injec tion attacks is necessary. Attackers may insert the malicious query via a web form or directly by appending the malicious query to the end of the URL in the address bar of browser. In a more unusual way of attack , attacker might try to inject the malicious variable through HTTP headers. For instance w hen the web application have a module that record the statistic related to the users acti vities such as users IP address , browser type and language. Basically these data will fetch from the HTTP header which co mes from the user browser and it will be stored inside the database for further analysis or drawing charts. Changing the HTTP headers is very simple by using specific programs which are designed for this goal or headers add- ons in browsers.
 B elow is an example of PHP script which will receive the IP address o f the user from the HTTP header and put it in a variable named $ip_address. Then without any input sanitization the variable concatenated with MySQL query. $ip_address = $_SERVER["REMOTE_ADDR"]; $result=mysql_query(‘select username from area where ip=’.$ip_address.’ and level=admin’); And below is the structure of the header that manipulated by the attacker which will lead to insert the SQL injection. GET /index.php HTTP/1.1 Host: [host] X_FORWARDED_FOR :127.0.0.1' or 1=1# The final query after concatenation which will send to the database management system for running will look like below: ‘select username from area where ip=’127.0.0.1’ or 1=1# and level=admin’); The above query will select the “username” from the “area” table and will not pay any attention to the ` where` clause. B ecause based on the logic after the SQL injection, the query condition is asking to seek the row that the IP address is equal to 127.0.0.1 or 1=1 . As 1 is always equal to 1 and it used an “OR” to join these two conditions, only one of these conditions need to be true to statement runs . And finally “#” sign which used for commenting will ignore the rest of the statement. SQL injection attacks are classified under seven main categ ories:
 • Tautologies, • Illegal/Logically Incorrect Queries • Union Query • Piggy -Backed Queries • Stored Procedures • Inference • Alternate Encodings Currently wide ranges of detection and prevention techniques are proposed and used by developers and application owner s. We can divide these techniques based on the nature of their defense to three main category of: • Best code practices : They are set of guidelines and policies for developers to improve the quality of 2013 International Conference on Informatics and Creative Multimedia 978-0-7695-5133-3/13 $26.00 © 2013 IEEEDOI 10.1109/ICICM.2013.18 48 2013 International Conference on Informatics and Creative Multimedia 978-0-7695-5133-3/13 $26.00 © 2013 IEEEDOI 10.1109/ICICM.2013.18 54 2013 International Conference on Informatics and Creative Multimedia 978-0-7695-5133-3/13 $26.00 © 2013 IEEEDOI 10.1109/ICICM.2013.18 54 2013 International Conference on Informatics and Creative Multimedia 978-0-7695-5133-3/13 $26.00 © 2013 IEEEDOI 10.1109/ICICM.2013.18 54 2013 International Conference on Informatics and Creative Multimedia 978-0-7695-5133-3/13 $26.00 © 2013 IEEEDOI 10.1109/ICICM.2013.18 48 2013 International Conference on Informatics and Creative Multimedia 978-0-7695-5133-3/13 $26.00 © 2013 IEEEDOI 10.1109/ICICM.2013.18 53 their code by following them. Using of the best practic es can highly decrease the potential chance of SQL injection vulnerabilities. • SQL injection detection: This technique detects the SQL injection attack s.
 • SQL injection runtime prevention: This technique prevents SQL injection attack in the execution time an d compares them against the legitimate query [3]. The rest of this paper is organized as follows. Section 2 explained the best code practice techniques following by some example for them . Section 3 explained SQL injection detection techniques . Section 4 explained SQL injection runtime prevention techniques . Finally section 5 is the conclusion. II. B EST CODE PRACTICES A. Manual Defensive Coding Practices In this technique developer will learn the SQL injection attack techniques and how to prevent them by securing t he source code. There are many cheat sheets available which can help the developer with secure coding guidelines. We can divide these practices to four main categories: • Parameterized queries or stored procedures :
 A parameterized query is a type of query wh ich has some placeholders. In these queries instead of making dynamic queries by concatenating the parameters with SQL statement, it will replace the placeholders with the value of parameters at the runtime. Using stored procedures also can be effective in combating SQL injection. B ecause they check the type of parameters, if the attacker passes a wrong type of value to the stored procedure, they will throw an exception but these exceptions should handle properly. In fact stored procedures independently can not eliminate the SQL injection but they do hide the structure of the database from the attacker. MySqlConnection conn = new MySqlConnection(_connectionString); MySqlCommand command = conn.CreateCommand(); MySqlParameter Parameter = new MySqlParameter("?id", id); command.Parameters.Add(Parameter); command.CommandText = "SELECT * FROM news where id = ?id"; • Escaping :
 Escaping i n aspect of SQL injection refers to a technique which escapes SQL language keywords.
 First by referring to DBMS manual a blacklist of dangerous keywords is created and later they apply the black list . Each database has its own escaping functions and librar ies. For example in PHP mysql_real_escape_string() will handle the escaping process. The following example is a PHP script that demons trates escaping function . In result of calling the escape function it will escape all dangerous characters like ' with \ char. $att = "This is Amir's laptop"; $escaped_att=mysql_real_escape_string($ att); printf("Escapedstring:”,$escaped_att); OUTPUT: Escaped string: This is Amir\ 's laptop • Data Type Validation :
 In this method developer should check the data that comes from the form fields. For example if the field is a phone number, it should check that it doesn’t contain a string. This method cannot gua ranty that it will fully stop the SQL injection but it make s the process harder for the attacker. • White List Filtering :
 White list filtering is the o pposite of black list filtering. It only allows those inputs that look legitimate to get accepted and execu ted in the database. The negative point about this technique is that they are hard to implement because input should be normalized before submitting into the detection algorithm [4]. B. SQL DOM SQL DOM is a technique which proposed by McClure and Kruger to gi ve the ability of using dynamic statements without security problems. Their application is made of a main file name d “sqldomgen” . At the first stage the developer need to run this file, to generate a DLL file. The output DLL file contains powerful classes which can help the developer to make dynamic queries with them. All field data types and structure of database will be available in the DLL file . In case later the database developed or any changes happen in the database structure, “sqldomgen” should run a gain on the database to provide the new classes for the development [5]. C. Parameterized Query Insertion This solution can find the vulnerable SQL queries inside the source code and replaces them with safe parameterized SQL quer ies. The drawback of this tech nique is that it only works with SQL structures created with explicit strings [3].
 In the following example the first line is showing the vulnerable dynamic statement and the second line onward is the replaced bounded variable by this solution. $result = mysql_query(“SELECT title FROM news WHERE nid = ‘$id’); $conn=new PDO(“mysql:host=localhost; dbname=MyDB;”,“DBusername”,“DBpassword”); $UserInput[] = Array(); $query = “SELECT title FROM news WHERE nid =?”; $UserInput[] = $id; $stmt = $conn - >prepare($query); $j = 1; foreach($UserInput as $item){ $statement->bindParam($j++, $item); } $result = $statement ->execute(); 495555554954 III. SQL INJECTION DETECTION A. SQLUnitGen SQLUnitGen is the short form of “SQL Injection Testing Using Static and Dynamic Analysis” , which proposed by Shin and colleagues. Their solution use static analysis to track the flow of user input for attack testing. The core of their tools is based on “JCracher” . They did some changes to create the test cases for the attack [6].
 B. MUSIC MUSIC is the short form of “MUtation -based SQL Injection vulnerabilities Checking” method which proposed by Zulkernine. He used mutation based testing approach for testing o f SQL injection vulnerability. “ Mutation is an error- based testing method which will inject syntax fau lt to see if any mutant exists. Then by comparing the output it can determine if the statement contains a mutant ”. Their method uses nine mutation operators to do the injection in the code [7] .
 C. Vulnerability and Attack Injection This solution is proposed by Fonsec a and colleagues.
 They present a method to attack the application by realistic SQL injection vulnerabilities. This will prepare an environment for testing the countermeasure of security tools such as intrusion detection systems, firewalls and vulnerabilit y scanners [8]. For reaching to more realistic results they used collected data from real attacks and patches.
 A nalyzing this information helped them to understand the vulnerable codes and their distinctions which are not vulnerable. The proposed tool is ma de of two main parts:
 “Attack Injection tool” and “Vulnerability Injection tool” which work automatically together .
 The Vulnerability Injection program is used to inject the SQL injection vulnerabilities in the code of the application. It reviews the sourc e code and looks for possible places that are suitable for the injection. When it founds the place for injection, it will use s the realistic patterns from the previous section (real world samples) and inject them. Attack injection tool is an application which works almost the same way of previous part. The only additional feature is that after injection of the vulnerability, i t will attempt to attack the application. By the help of a HTTP proxy this tool will sniff the traffic between the web application an d the database management system. These data will used to launch the attack against vulnerable files. Next by using “Attack success detector” tool , it will verify that the attack is successfully launched. Attack injection tool has a weakness which will make mistake when a variable value processed be fore using in the SQL statement. For example the phone number of the user might be split into section of country code and phone number and they will be used against two columns in the database. This wil l lead this algorithm to make a mistake in the detection . D.
 SUSHI SUSHI is a “string constrain t solver” proposed by Fu and Li. T hey proposed a recursive algorithm which can solve Simple Linear String Equation (SISE) in an efficient way [9].
 They break the SISE constra int to atomic string operations.
 They proved that their solution is very effective in finding co mplicated SQL injection attacks .
 E. Ardilla Ardilla is an approach for creating SQL injection attacks proposed by Kiezun and colleagues. This tool is able to gener ate attacks to use as the input of the web application , to detect SQL injection vulnerabilities [10]. They believe that their solution has no overhead in execution time also the modification of the source code is not needed. Ardilla will generate some inpu ts, and then run the application with each input for test ing. Afterward it receive the output and analysis it , to see is there any data sending to database between the times of receiving of the input until the query execution. F. String Analyzer String Analyz er is proposed by Wassermann and Su, they proposed a grammar based algorithm which model the string values as context free grammars and string operations as language transducers following Minamide [11]. This solution labels those strings that come from the user side as nonterminal. It will assign the “ direct label” to those strings that are come directly from the user side such as GET requests . And assign “ indirect label ” to strings th at are come from database side. Next they summarize the labeled strings t o find the contexts and afterward by using regular language s and context free language s check the security of each string in aspect of syntax. G. PHPMiner PHP Miner is a tool that proposed by Khin Shar and Kuan Tan, which mines static code attributes and then make a model of vulnerability prediction based on the data col lected in the previous phase [12].
 IV. SQL INJECTION RUNTIME PREVENTION A. SQLrand Boyd and Keromytis proposed a technique for SQL injection prevention which use randomized SQL query to detect malicio us statements and abort them. For this purpose they made random ized instances of the SQL query by randomizing the template query inside the CGI s cript and the database parser [1 3]. For example the SELECT ke yword will replace by SELECT921. SELECT921 is a ra ndom name which generated for the current execution. L ater the developer by using a proxy will intercept the traffic between the application and the database, and if any keywords without randomization found that is a SQL injection. In result attacker canno t do the SQL injection without knowing the random key. The positive point about this solution is that it will not affect the performance. 505656565055 B. AMNESIA Halfond and Orso proposed the AMNESIA model which is the combination of static analysis and runtime analy ze of behavior of application [1 4]. AMNESIA creates a model of origi nal queries in the static part . Afterward in the dynamic part monitor s "dynamically generated queries " at runtime and compare them against the legitimate model. SQL statements which cannot meet the requirements will know as SQL injection attack and tool will stop them before sending them to the database. The main weakness of this technique is that canno t support segmented queries [4] .
 C. WASP Halfond and colleagues proposed WASP (Web Applications U sing Positive Tainting and Syntax- Aware Evaluation) solution which works based on the dynamic tainting [1 5]. Their approach is the improved version of classic tainting. The first improvement is the using of positive tainting which is based on making trust . C lassic tainting i s based on untrusted data. Next improvement is the accuracy and efficiency of the tainting by tracing of trust making at character level. Third improvement is the blocking of queries which contains SQL keywords and operators without trus t making. The last one is the minimal implementation requirements which make this method practical .
 D. SQLprob SQLProb is the short form of SQL Proxy based Blocker, a SQL injection detection system which proposed by Liu and colleagues. This approach extracts the user input from the query generated by the web application. Then validate these data in context of the genera ted query’s syntactic structure. For this purpose they used genetic algorithm. This system has few advantages. The first one is that , it does not require source code of the application. Next one is that the validation process does not need learning. Third improvement is that this technique used a proxy which needs the minimum requirement for the implementation. The last one is the indepen dency fr om programming language [16] .
 E. CANDID CANDID is stand for (CANdidate evaluation for Discovering Intent Dynamically) which proposed by Bisht, Madhusudan and Venkatakrishnan. This technique dynamically mines the programmer intended query structure at the runtime with valid inputs . Then compare it with legitimate query statement . If the result is not the same, it is a SQL injection attack [1 7].
 V. C ONCLUSION One of the most dangerous vulnerabilities in the web application is SQL injection. Until now many differen t techniques are proposed by researchers to defeat it. H owever attackers always found a new method to bypass the se solutions. In this paper we have presented taxonomy of different detection and prevention techniques for this vulnerability. In this taxonomy we divide all the techniques to three main categories of 1.Best code practices, 2.SQL injection detection, and 3.SQL injection runtime prevention.
 In future this comprehensive classification can help other researchers in their studies on SQL injection .
 R E FERENCES [1] 1.Antunes, N. and M. Vieira, “ Defending against Web Application Vulnerabilities. ” Computer, 2012. 45(2): p. 66- 72.
 [2] (OWASP), “O.W.A.S.P. Top 10 Vulnerabilities. ”; Available from:
 https://www.owasp.org/index.php/Top_10 2013. [3] Shar, L.K. and T. Hee Beng Kuan, “Defeating SQL Injection. ” Computer, 2013. 46(3): p. 69- 77.
 [4] Janot, E. and P. Zavarsky. “ Preventing SQL Injections in Online Applications: Study, Recommendations and Java Solution Prototype Based on the SQL DOM. ” in OWASP App. Sec. Conference. 20 08.
 [5] McClure, R.A. and I.H. Kruger. “ SQL DOM: compile time checking of dynamic SQL statements. in Software Engineering, 2005. ” ICSE 2005. Proceedings. 27th International Conference on. 2005. [6] Shin, Y., L. Williams, and T. Xie. “Sqlunitgen: Sql injection testing using static and dynamic analysis. ” in supplemental Proceedings of the 17th IEEE International Conference on Software Reliability Engineering (ISSRE 2006). 2006. [7] Shahriar, H. and M. Zulkernine. “MUSIC: Mutation -based SQL Injection Vulnerability Checkin g.” in Quality Software, 2008. QSIC '08. The Eighth International Conference on. 2008. [8] Fonseca, J., M. Vieira, and H. Madeira. “Vulnerability & attack injection for web applications ”. in Dependable Systems & Networks, 2009. DSN '09. IEEE/IFIP International Conference on. 2009.
 [9] Fu, X. and C. -C. Li. “A string constraint solver for detecting web application vulnerability. ” in Proceedings of the 22nd international conference on software engineering and knowledge engineering (SEKE). 2010.
 [10] Kieyzun, A., et al. “ Automatic creation of SQL Injection and cross - site scripting attacks. ” in Software Engineering, 2009. ICSE 2009.
 IEEE 31st International Conference on. 2009. [11] Wassermann, G. and Z. Su, “ Sound and precise analysis of web applications for injection vulnerabilities. ” SIGPLAN Not., 2007.
 42(6): p. 32- 41.
 [12] Shar, L.K. and H.B.K. Tan, “ Mining input sanitization patterns for predicting SQL injection and cross site scripting vulnerabilities” in Proceedings of the 2012 International Conference on Software Engineering2012, IEEE Press: Zurich, Switzerland. p. 1293 -1296. [13] Boyd, S.W. and A.D. Keromytis. “ SQLrand: Preventing SQL injection attacks. ” in Applied Cryptography and Network Security.
 2004. Springer. [14] Halfond, W.G.J. and A. Orso, “ AMNESIA: analysis and monitoring for NEutralizing SQL -injection attacks. ” in Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering2005, ACM: Long Beach, CA, USA. p. 174- 183.
 [15] Halfond, W.G.J., A. Orso, and P. Manolios, “ WASP: Protecting Web Applications Using Positive Tainting and Syntax -Aware Evaluation. ” Software Engineering, IEEE Transactions on, 2008. 34(1): p. 65- 81.
 [16] Liu, Anyi, Yi Yuan, Duminda Wijesekera, and Angelos Stavrou.
 "SQLProb: a proxy -based architecture towards preventing SQL injection attacks." In Proceedings of the 2009 ACM symposium on Applied Computing, pp. 2054- 2061. ACM, 2009.
 [17] Bisht, P., P. Madhusudan, and V.N. Venkatakrishnan, “ CANDID:
 Dynamic candidate evaluations for automatic prevention of SQL injection attacks. ” ACM Trans. Inf. Sys t. Secur., 2010. 13(2): p. 1- 39. 515757575156

 GET YOUR EXPERT ANSWER ON STUDYDADDY

 Post your own question
and get a custom answer

 GET ANSWER

 [image: LET'S ORDER THE BEST ASSIGNMENT SERVICES]

 Have a similar question?

 Continue to post
 Continue to edit or attach image(s).

 	
 [image: Fast and convenient]
 Fast and convenient

 Simply post your question and get it answered by professional tutor within 30 minutes. It's as simple as that!

	[image: Any topic, any difficulty]
 Any topic, any difficulty

 We've got thousands of tutors in different areas of study who are willing to help you with any kind of academic assignment, be it a math homework or an article.

	
 [image: 100% Satisfied Students]
 100% Satisfied Students

 Join 3,4 million+ members who are already getting homework help from StudyDaddy!

 	Homework Answers
	Ask a Question
	Become a tutor
	FAQ
	Contact Us
	Privacy Policy
	DMCA
	Terms of Use
	Sitemap

 Copyright © 2024 StudyDaddy.com

 Worbert Limited - All right reserved.

 20 Christou Tsiarta Elma 2, 22, 1077, Nicosia, Cyprus

