

 STUDYDADDY
 	How it Works
	Homework Answers
	
 Ask a Question
	Top Tutors
	FAQ
	Sign in

 StudyDaddy

 Article Writing
 SQL injection attacks- Paper and PPT SQL injection attacks- Paper and PPT

 SQL Injection Detection and Prevention System with Raspberry Pi Honeypot Clus ter for Trapping Attacker Supeno Djanali, FX Arunanto, Baskoro Adi Pratomo, Hudan Studiawan, Satrio Gita Nugraha Department of Informatics, Faculty of Information Technology Institut Teknologi Sepuluh Nopember Surabaya, Indonesia , , , Abstract—One of the most common security attack for web application is SQL injection. It is an attack to acquire access to application’s database through injection of script or malicious query attributes. This attack can be executed in any page of web application which interacts with database. SQL injection could be more dangerous if the victim was an enterprise system such as online banking. Many methods have been researched and developed to prevent SQL injection attacks. One of them is the use of a honeypot. This paper proposed a method for increasing system’s capability to detect and prevent SQL injection attacks based on removal of SQL query attribute values and honeypot for trapping attackers. A honeypot is placed as decoy system to hide actual web server from attacker. Malicious queries from attackers will be sent to honeypot while normal queries will be sent directly to the real web server.
 Honeypot is also used to provide activity logging of each attack which can be used for further analysis. We play with Raspberry Pi because it is cheap and effective to be used as a honeypot. Due to its limited computational ability, we make cluster to improve its power. Based on conducted experiments, we could achieve up to 64% accuracy of SQL injection attack. Moreover, with the redirection, our honeypot could get more attack data to be analyzed.
 Keywords : SQL Injection, Honeypot, Cluster I. INTRODUCTION Due to recent increases in internet’s popularity, many enterprises decided to move their services to a web-based system. These systems often hold very important aspects in the company’s core business, such as web-based banking system and online shop. Sharma [1] showed a revolution in business through a web-based marketing strategy. Web-based applications have many advantages, such as accessibility. That means you can access them everywhere and everytime.
 However, as internet’s popularity is increasing, attacks on web- based application are increasing as well. Most of them exploit vulnerability of the web-based application [2].
 While most attacks are aimed to drain system’s resources, SQL injection could take and insert data into database. It becomes a dangerous threat to server systems of banks and military. Many websites can be exploited by using SQL injection, such as bypassing authentication process in web- based application and inserting dangerous codes in database management system. The attacker will penetrate the system without going through proper authentication process. SQL injection attack uses vulnerability between database layer and CGI layer [3]. For example, when users send their ID and password, presentation layer uses GET and POST method to send data to CGI layer. SQL query in CGI layer will connect to database and executes authentication process. This kind of attack is a dangerous query that could change normal query in an application into a dangerous one. It makes an abnormal access to the database. If the attacker could make a change in the database system via SQL injection, such as deleting or adding fake data, business will be in danger. Therefore, in this paper we propose a system that could help to secure web application by preventing SQL injection attack using Lee’s method combining with our Raspberry Pi server cluster. Moreover, by redirecting malicious packet to the honeypot, we could get more data come into our honeypot. We also employ HIHAT as honeypot because of its robustness for trapping attacker. The rest of this paper is structured as follows: Section II shows related works to SQL Injection detection and some basic understanding of honeypot. Section III presents our proposed system. Section IV shows our experimental results, and the last section concludes our works.
 II. R ELATED WORKS A. SQL Injection Detection As more people are getting concerned with this attack, several methods have been developed to prevent it. PHP Magic Quotes is a method to prevent SQL injection offered by PHP web framework [4]. It works by detecting specific character. If one or more of four specific characters, such as ’, ”, /, and NULL are found in POST, GET, and COOKIES data, character will be added in front of these characters. Wasserman [5] used static analysis combined together with automatic consideration. This method assumes that there is no tautology results from dynamically generated SQL query. Therefore, this method is very efficient in detecting SQL injection attack, but not for other attacks. Shin [6] had a method to create trial input data to find vulnerability of SQL injection by creating white- box on input flow and validation analysis. Buehrer [7] 2014 International Symposium on Technology Management and Emerging Techn\ ologies (ISTMET 2014), May 27 - 29, 2014, Bandung, Indonesia978-1-4799-3704-2/14/$31.00 ©2014 IEEE 163 introduced a detection that combined static and dynamic method analysis by comparing static and dynamic query using parse tree. Lee [8] proposed deletion mechanism of attribute value in a sent query by user. This algorithm needs two input data, fixed query (FQ) and dynamic query (DQ). FQ is a normal query run by a system with standard attribute value. This query is created by web-application developer when accessing to database. DQ is a query results from data inputted by user. The main point is FQ is figured as a query template, while DQ is a query result after changing attribute value from FQ by inserting attribute value from user. This method is very reliable to handle SQL injection. B. Honeypot On the other hand, there are many honeypot used and developed recently. The purpose of honeypot deployment is ability to study attack methods used by attacker. Honeypot is an information system resource that is intended to be used without permission [9]. It works as electronic decoy pretending to be a normal system but actually waiting for tracking cracker activities. Honeypot is equipped with special software that aims to make easier learning of a successful attack in more details. A simple honeypot may take the form of a normal application with vulnerabilities which was modified with special procedure of surveillance and logging. Attack log may also be used for computer forensic such as tracing attacker’s identity. Each honeypot has its own purpose, both of service type, language used, as well as certain types of attacks. Dionaea is a low interaction honeypot that can detect malware by emulating several different protocols such as SMD, HTTP, FTP, TFTP, MSSQL, MySQL, and SIP. Dionaea emulates Windows 2000 systems vulnerabilities [10]. Kippo is a medium interaction honeypot that emulates SSH shell [11]. Kippo simulates common commands on Linux system and fakes file system.
 Amun is a low interaction honeypot that listens to common port and detects any connection attempt [12]. Amun works by mimicking a number of weaknesses module, port monitoring, and shellcode recording. Glastopf is low interaction honeypot that exposes web server weakness, such as SQL injection and file inclusion [13]. High Interaction Honeypot Analysis Toolkit (HIHAT) has a feature to change the PHP application into a high-interaction honeypot [14]. HIHAT works by adding a line of code to every page of a PHP script, with the aim to keep details of all requests to database. Due to the honeypot does not make changes to application's main function, regular supervision is still necessary to keep system secure.
 III. P ROPOSED SYSTEM This section will explain design of our system to detect an SQL injection attack. Proposed architecture is shown in Figure.
 1. This system consists of a real web server, a honeypot, and a proxy server. While web server provides real web content, honeypot accepts request from client, detects SQL injection attack, and gives feedback to client. Proxy server receives request, selects it, and forwards request to web server or honeypot, then sends response back from server to client. Figure. 1 Proposed architecture to detect and prevent SQL injection attack Proxy server will act as web server by opening port number 80. Therefore, client will expect all web content are provided by proxy server. The network that connects to real web servers is a private network, to secure our proposed topology. By making our network private, client could not open web server directly. Nevertheless, they are still able to access honeypot directly. Since our honeypots are given public IP address.
 This system will behave as a proxy between client and web server. The system will act as a web server that provides services and client will send request to system. Request from client will be examined by proxy server. If client request method is not POST, request will be redirected to web server.
 Otherwise, system will record sent data in POST parameter.
 The data will be filtered using SQL query attribute deleting method. If parameter passes the filter, it will be redirected to web server. If parameter cannot pass, then there is a SQL injection attack in the request parameter. For every detected request, it will be sent into honeypot and recorded as an attack.
 The system is also responsible for forwarding the reply from web server or honeypot to the client.
 In more detail, the first step in proxy server is to parse received data and get request method from client. The proxy server should have capability to handle HTTP request, opening port 80, creating thread to handle request, and sending HTTP response.
 Get HTTP request from client Check request method Get POST parameter data Get FQ Create DQ based on POST parameter Calculate FFQ and FDQ XORing between FFQ and FDQ If True:
 Forward HTTP request to honeypot cluster Else:
 Forward HTTP request to real web server Get response from honeypot cluster or web server and send it to client Figure. 2 Procedure of detection and prevention system 164 If request method is a POST, parameter will be processed as a dynamic query (DQ). It is used in SQL injection attack detection process. Figure. 2 briefly shows all process for each HTTP request.
 SQL injection detection is conducted in every HTTP request to proxy server. Received HTTP request will be managed to get attribute value. Afterwards, two queries are created. They are fixed query (FQ) which is normal query and dynamic query (DQ) which is query with attribute value based on user input. The next step is deleting attribute value in the two queries to get FFQ and FDQ. Figure. 3 shows pseudo code for deleting attribute as proposed by Lee [8].
 This algorithm works by deleting query attribute value from FQ and DQ through f() function. Function f() is a function that implement algorithm to delete SQL query attribute value and will generates FFQ and FDQ. Decision whether a request is SQL injection attack or not is based on XOR operation between FFQ and FDQ which is the output from f(FQ) and f(DQ). The query that is resulted after deletion process (FDQ) will go through XOR operation with normal query that should be inserted by user (FFQ). If the result of XOR operation has FALSE value, it means the query that is inserted by user is a normal query that will be passed to database server to get query result as expected. Otherwise, if XOR operation returned TRUE value, it means the query that was inserted by user is expected as SQL injection attack.
 As can be seen in Figure. 1, we have two public servers.
 They are proxy server and honeypot cluster server with one load balancer. Proxy server acts as SQL Injection detector with method as mentioned before. It scans the request and decides whether it goes to our honeypot cluster or real server. Our honeypot consists of several Raspberry Pis that work as one clustered server. With this configured topology, we could get more data came into our honeypot. If an attack detected at proxy server, then request will be redirected to honeypot cluster. Then the second server will decide which Raspberry Pi will receive them. Each Raspberry Pi, which contained a HIHAT honeypot, emulates attack responses in order to deceive hackers. Aside from receiving attack from SQL Injection detector, our Raspberry Pi cluster also receives attack directly from hackers. This could be happened since our cluster load balancer also resides on public address too. Mostly, the hackers came into our honeypot after they do some scanning of our network.
 Then they find vulnerability in honeypot cluster.
 Status = 0 For every character in query string If status is 0 Add character to output If character is ‘ and status is 0 Status = 1 Else if character is ’ and status is 1 Add character to output Status = 0 Figure. 3 SQL query attribute deletion Infrastructure cost may also become our consideration. If buying a single server needs a lot of money, of course the costs required to build a server cluster can also be higher. This is why we have an alternative to use a mini-computer, Raspberry Pi, since it also powerful enough to be installed with honeypot.
 Raspberry Pi is a credit card-sized computer that uses an ARM- based processor. The price of a Raspberry Pi board is only about USD 35. However, the ability of the Raspberry Pi computer is not as good as with the regular x86-based processors. Therefore, some of the Raspberry Pi will be clustered. Server cluster needs load balancer for job distribution. In this study, we use Linux Virtual Servers (LVS) [15] as balancer and ten Raspberry Pi type B as backend server with Debian-based operating system, Raspbian. The load balancer used Ubuntu Server 13.04 Raring Ringtail as operating system.
 IV. E XPERIMENTAL RESULTS Experiment was conducted using sqlmap scanner to arrange SQL injection automatically. This stage aims to determine the ability of proposed system to detect SQL injection in large numbers and in more complex way. In this test, we access the system using SQLmap as a client.
 SQLmap attack is differentiated into 20 types based on the level and risk parameter. Level variable has the scale of 1 to 5 and risk has a value of 1 to 4. Both of these variables affect the type of SQL injection attack that is sent to the server. Table 1 depicts the results of this experiment, which demonstrated that the proposed system is capable of detecting SQL injection attacks well. From a total of 9777 requests by SQLmap, 64% (6264) request is detected as attack and only 36% (3533) is considered as a normal query. It is still without setting aside some of normal requests sent by SQLmap to learn the system. This indicates the system has worked well because it is able to detect 64% SQLmap request as an attack. TABLE I. SQL MAP EXPERIMENTAL RESULTS Risk (R), Level (L) Total Request Detected Not detected R = 1, L = 1 207 177 30 R = 1, L = 2 292 224 68 R = 1, L = 3 397 272 125 R = 1, L = 4 579 368 211 R = 1, L = 5 692 428 264 R = 2, L = 1 207 177 30 R = 2, L = 2 291 224 67 R = 2, L = 3 397 272 125 R = 2, L = 4 579 368 211 R = 2, L = 5 691 428 263 R = 3, L = 1 207 177 30 R = 3, L = 2 327 238 89 R = 3, L = 3 523 316 207 R = 3, L = 4 759 432 327 R = 3, L = 5 907 500 407 R = 4, L = 1 207 177 30 R = 4, L = 2 328 238 90 R = 4, L = 3 522 316 206 R = 4, L = 4 759 432 327 R = 4, L = 5 906 500 406 Total 9777 6264 3513 165 In addition, the results of database information received by SQLmap are owned by honeypot database. It illustrates SQLmap has successfully trapped to honeypot. We also manually inject our system to check its functionality.
 Performance test is conducted to determine the reliability of system response time whenever handling requests. To measure response time, we use two methods. The proxy system count the time in milliseconds that it takes the system to handle any request from the initial request is received until the response completion to the client. Then, it is also calculated the response time of client side software using Firebug. Finally, we check the time spent in the system for each POST request to measure SQL injection detection process. This experiment uses a web browser as a client for accessing our proxy URL http://192.168.x.x/mutillidae. Table 2 describes the response time for each client request that is sent in the process of loading a web page from destination URL. The results show that the system requires an average of about 5012 milliseconds to handle each request that uses GET method. TABLE II. GET REQUEST RESPONSE TIME Request Response Time (ms) GET /mutillidae/ HTTP/1.1 5153 GET /mutillidae/styles/ddsmoothmenu/ddsmoothmenu-v.css HTTP/1.1 5011 GET /mutillidae/styles/global-styles.css HTTP/1.1 5030 GET /mutillidae/javascript/ddsmoothmenu/ddsmoothmenu.js HTTP/1.1 5008 GET /mutillidae/javascript/ddsmoothmenu/jquery.min.js HTTP/1.1 5011 GET /mutillidae/javascript/bookmark-site.js HTTP/1.1 5009 GET /mutillidae/styles/ddsmoothmenu/ddsmoothmenu.css HTTP/1.1 5030 GET /mutillidae/javascript/jQuery/colorbox/colorbox.css HTTP/1.1 5010 GET /mutillidae/images/owasp-logo- 400-300.png HTTP/1.1 5 109 GET /mutillidae/images/question-mark-229-347.png HTTP/1.1 5008 GET /mutillidae/images/twitter-bird-48-48.png HTTP/1.1 5010 GET /mutillidae/images/coykillericon.png HTTP/1.1 5114 GET /mutillidae/images/youtube-48-48.png HTTP/1.1 5015 GET /mutillidae/javascript/jQuery/jquery.balloon.js HTTP/1.1 5013 GET /mutillidae/images/mail-icon-48-48.png HTTP/1.1 5010 GET /mutillidae/images/siren-128-128.png HTTP/1.1 5015 GET /mutillidae/javascript/jQuery/colorbox/jquery.colorbox-min.js HTTP/1.1 5011 GET /mutillidae/javascript/jQuery/jquery.js HTTP/1.1 5012 GET /mutillidae/images/new-icon-96-96.png HTTP/1.1 5019 GET /mutillidae/images/worm-gear-48-48.png HTTP/1.1 5010 GET /mutillidae/images/help-easy-button-48-48.png HTTP/1.1 5012 GET /mutillidae/images/technical-support-48-48.png HTTP/1.1 5011 GET /mutillidae/images/phpmyadmin-logo-48-48.png HTTP/1.1 5019 GET /mutillidae/images/help-icon-48-48.png HTTP/1.1 5012 GET /mutillidae/images/tools-icon-64-64.png HTTP/1.1 5009 GET /mutillidae/images/right.gif HTTP/1.1 5012 GET /mutillidae/images/installation-icon-48-48.png HTTP/1.1 5010 TABLE III. POST REQUEST RESPONSE TIME Request Response Time (ms) POST /mutillidae/index.php?page=login.php HTTP/1.1 5190 GET /mutillidae/index.php?popUpNotificationCode=AU1 HTTP/1.1 5091 GET /mutillidae/styles/gritter/jquery.gritter.css HTTP/1.1 5060 GET /mutillidae/javascript/gritter/jquery.gritter.min.js HTTP/1.1 5061 GET /mutillidae/images/gritter/ie-spacer.gif HTTP/1.1 5497 GET /mutillidae/images/gritter/gritter.png HTTP/1.1 5058 The next test aims to determine response time required for the proposed system to handle the client request using POST method. We access http://192.168.56.1/mutillidae/index.php?page=login.php which is web page for the login process. Table 3 illustrates the detailed response time required for each request using the POST method. The results show that system response time needed to deal with the POST request method is not much different than GET method.
 V. C ONCLUSIONS AND FUTURE WORKS Our proposed system was able to capture most of SQL Injection Attack variations and redirected them to our honeypot. Thus, our honeypot could get more data, since the attacker would think that they have successfully entered the real web server. For the future work, we will make use of our collected data to generate IDS rules automatically. The collected data will be used to test our new system and this work will support our next system.
 A CKNOWLEDGMENT This work is highly supported by Directorate General of Higher Education via Laboratory Research scheme with grant number 013674.119/IT2.7/PN.08.01/2013.
 R EFERENCES [1] A. Sharma and J. N. Sheth, "Web-based marketing: The coming revolution in marketing thought and strategy," Journal of Business Research, vol. 57, no. 7, 2004, pp. 696-702.
 [2] S. P. Oriyano and R. Shimonski, "Web application attacks," in Client- Side Attacks and Defense, Boston, Elsevier, 2012, pp. 195-221.
 [3] J. Clarke, "Chapter 2 - Testing for SQL Injection," in SQL Injection Attacks and Defense, Boston, Elsevier Inc., 2009, pp. 29-93.
 [4] "PHP: Magic Quotes", http://www.php.net/magic_quotes.
 [5] G. Wasserman and Z. Su, "An analysis framework for security in web applications," in Proceedings of The FSE Workshop on Specification and Verification of Component-Based Systems, 2004, pp. 70-78.
 [6] Y. Shin, "Improving the identification of actual input manipulation vulnerabilities," in 14th ACM SIGSOFT Symposium on Foundations of Software Engineering, 2006.
 [7] G. Buehrer, B. Weide, and P. Silvilotti, "Using parse tree validation to prevent SQL injections attacks," in Proceedings of The 5th International Workshop on Software Engineering and Middleware, 2005, pp. 106- 113.
 [8] I. Lee, S. Jeong, S. Yeo, and J. Moon, "A novel method for SQL injection attack detection based on removing SQL query attribute values," Mathematical and Computer Modelling, vol. 55, no. 1, 2012, pp. 56-68.
 [9] The Honeynet Project, “Know your enemy: Learning about security threats,” London: Addison-Wesley Longman, 2004.
 [10] “Dionaea catches bug”, http://dionaea.carnivore.it/ [11] “Kippo SSH honeypot”, https://code.google.com/p/kippo/ [12] J. Gobel, "Amun: A python honeypot," Universitat Mannheim/Institut fur Informatik, Mannheim, 2009.
 [13] L. Rist, S. Vetsch, M. Kobin, and M. Mauer, “Glastopf: A dynamic, low-interaction web application honeypot,” The Honeynet Project, 2010 [14] M. Muter, F. Freiling, T. Holz and J. Matthews, "A generic toolkit for converting web applications into high-interaction honeypots," Clarkson University, New York, 2007 [15] W. Zhang, “Linux Virtual Server for Scalable Network Services,” 2000 166

 GET YOUR EXPERT ANSWER ON STUDYDADDY

 Post your own question
and get a custom answer

 GET ANSWER

 [image: LET'S ORDER THE BEST ASSIGNMENT SERVICES]

 Have a similar question?

 Continue to post
 Continue to edit or attach image(s).

 	
 [image: Fast and convenient]
 Fast and convenient

 Simply post your question and get it answered by professional tutor within 30 minutes. It's as simple as that!

	[image: Any topic, any difficulty]
 Any topic, any difficulty

 We've got thousands of tutors in different areas of study who are willing to help you with any kind of academic assignment, be it a math homework or an article.

	
 [image: 100% Satisfied Students]
 100% Satisfied Students

 Join 3,4 million+ members who are already getting homework help from StudyDaddy!

 	Homework Answers
	Ask a Question
	Become a tutor
	FAQ
	Contact Us
	Privacy Policy
	DMCA
	Terms of Use
	Sitemap

 Copyright © 2024 StudyDaddy.com

 Worbert Limited - All right reserved.

 20 Christou Tsiarta Elma 2, 22, 1077, Nicosia, Cyprus

