
 
 

9B13E019 
 
 

IBM: THE ITERATIVE SOFTWARE DEVELOPMENT METHOD 
 
 
 

Rakan Khalid wrote this case under the supervision of Joe Compeau solely to provide material for class discussion. The authors do 
not intend to illustrate either effective or ineffective handling of a managerial situation. The authors may have disguised certain 
names and other identifying information to protect confidentiality. 
 
This publication may not be transmitted, photocopied, digitized or otherwise reproduced in any form or by any means without the 
permission of the copyright holder. Reproduction of this material is not covered under authorization by any reproduction rights 
organization. To order copies or request permission to reproduce materials, contact Ivey Publishing, Ivey Business School, Western 
University, London, Ontario, Canada, N6G 0N1; (t) 519.661.3208; (e) cases@ivey.ca; www.iveycases.com. 
 
Copyright © 2013, Richard Ivey School of Business Foundation Version: 2013-09-04 

 
 
INTRODUCTION 
 
On November 16, 2010, John Lalonde, the head of IBM’s Rational Product Development, was sipping his 
café mocha thinking about his upcoming meeting with his counterpart, Neil Mayor, the head of IBM’s 
WebSphere Product Development. Mayor had requested Lalonde to deliver an additional feature in the 
Rational product that would then enable WebSphere to deliver a particular feature. Although the Rational 
and WebSphere products had interdependencies and complemented each other, each product offered a 
unique functionality to IBM customers and thus each was sold by IBM as a separate product.  
 
The feature requested by Mayor was a customer requirement that had the potential to generate $40 
million1 in revenue for IBM, but the requirement had come very late in the product development cycle. 
Although the customer requirement was for WebSphere, the interdependency between WebSphere and 
Rational and the customer’s request for a complete end-to-end solution involving the two products meant 
that the Rational product needed to develop the additional feature in response to the customer requirement 
received by Lalonde.  
 
Rational’s product development team used the agile iterative software development method to develop 
the product. Unlike the traditional method of developing software products, in which all requirements 
were hashed out before the product development cycle, the iterative nature of the development process 
meant that requirements could be received during the product development cycle.  
 
Lalonde faced many questions. Should he undertake Mayor’s requirements? If so, could Lalonde deliver 
the functionality in time without delaying the product release? Did Lalonde have the resources to do so? 
Would it be risky to change the software code late in the development cycle and potentially break the 
existing product functionality? Lalonde needed to come up with answers to these questions and ensure 
that a high-quality product was released on time and within the budget.  
 
 

                                                           
1 All currency amounts are shown in U.S. dollars unless otherwise noted. 

A
ut

ho
riz

ed
 fo

r 
us

e 
on

ly
 in

 th
e 

co
ur

se
 C

M
P

T
 6

41
  I

nf
or

m
at

io
n 

T
ec

hn
ol

og
y 

fo
r 

M
an

ag
er

s 
at

 U
ni

ve
rs

ity
 C

an
ad

a 
W

es
t t

au
gh

t b
y 

A
dr

ia
n 

 M
ite

sc
u 

 fr
om

 J
an

 0
5,

 2
01

7 
to

 M
ar

 2
3,

 2
01

7.
U

se
 o

ut
si

de
 th

es
e 

pa
ra

m
et

er
s 

is
 a

 c
op

yr
ig

ht
 v

io
la

tio
n.



Page 2 9B13E019 
 
 
INTERNATIONAL BUSINESS MACHINES 
 
Founded in 1911 and headquartered in Armonk, New York, International Business Machines (IBM) was 
one of the world’s largest providers of informational technology (IT) solutions and services. In 2010, 
IBM generated profits of $14.8 billion on $99.8 billion of revenue. IBM generated its revenue through 
five different business segments (see Exhibit 1):  
 
1. Global Technology Services 
2. Global Business Services 
3. Software 
4. Systems & Technology 
5. Global Financing 
 
Up until the late 1980s, IBM’s business portfolio had revolved primarily around computer hardware such 
as the System 390 and AS/400 mainframe servers, ThinkPad and ThinkCenter personal computers, 
memory, disk drives and printers. The competition in the computer hardware business became intense 
with the emergence of players such as Dell, Toshiba, Acer, HP and Compaq (now part of HP). IBM soon 
realized that the hardware business was shifting into a commodity business. It needed a newer business 
model that would usher it in as the technology titan in the sophisticated 21st-century computing world.  
 
Under chief executive officers Louis V. Gerstner and Samuel Palmisano, IBM had shifted its business 
mix into higher-value computing businesses that consisted of software and services. IBM exited the low-
margin hardware business by divesting its personal computing division to China-based Lenovo Group and 
by discontinuing the manufacturing of memory, disk drives and printers. IBM focused its investment into 
building enterprise software such as databases, application servers and infrastructure management 
software in its research and development labs across the globe. It also acquired several software and 
services companies to build world-class IT solutions and services capabilities. IBM’s strategy to move 
into higher-value businesses resulted in a larger proportion of its profits being generated from software 
business segment compared with in the early 2000s. The shift in strategy enabled IBM to remain a 
relevant force in the IT industry, while some of its competitors, such as HP and Dell, struggled with their 
lower-margin, hardware-focused business.  
 
In 2009, IBM introduced its five-year roadmap (2010–2015) that could be summarized by the statement 
“Generating Higher Value at IBM.” The roadmap consisted of investing in high-growth software 
businesses, such as cloud computing and business analytics, and aggressively expanding its revenue from 
emerging markets. IBM’s management hoped that its five-year roadmap would culminate into an 
Earnings per Share (EPS) of $20, double that of 2010. The software business segment would play an 
important role to help IBM reach that financial goal as IBM expected the software segment to generate 50 
per cent of its pre-tax income by 2015. In 2010, IBM’s software business segment generated revenue of 
$22.5 billion and pre-tax income of $9.1 billion (44 per cent of IBM’s total pre-tax income).  
 
 
THE COMPETITIVE LANDSCAPE  
 
The diverse nature of IBM’s business portfolio meant that IBM competed against firms in the broader IT 
software, hardware and services market. Thus, its software business competed against large firms such as 
Microsoft, Oracle, SAP and Symantec (see Exhibit 2a). The extremely high gross margin in the software 
business (approximately 80 per cent) meant that the competition in the software business was fierce, with 
every player trying to gain as much of the market share as possible. IBM also faced competition from 
smaller niche players, such as Splunk and Cloudera. In the hardware business, IBM primarily competed 

A
ut

ho
riz

ed
 fo

r 
us

e 
on

ly
 in

 th
e 

co
ur

se
 C

M
P

T
 6

41
  I

nf
or

m
at

io
n 

T
ec

hn
ol

og
y 

fo
r 

M
an

ag
er

s 
at

 U
ni

ve
rs

ity
 C

an
ad

a 
W

es
t t

au
gh

t b
y 

A
dr

ia
n 

 M
ite

sc
u 

 fr
om

 J
an

 0
5,

 2
01

7 
to

 M
ar

 2
3,

 2
01

7.
U

se
 o

ut
si

de
 th

es
e 

pa
ra

m
et

er
s 

is
 a

 c
op

yr
ig

ht
 v

io
la

tio
n.



Page 3 9B13E019 
 
 
against HP, Dell, Oracle (which now included Sun Microsystems) and Fujitsu (see Exhibit 2b). The 
services business faced competition from the likes of HP, Accenture, Fujitsu and CSC (see Exhibit 2c).  
 
 
IBM RATIONAL AND WEBSPHERE  
 
IBM’s software business segment was composed of the IBM Software Solutions Group and IBM 
Software Middleware Group. The various software solutions and products from these groups could 
integrate with each other.  
 
The solutions group’s portfolio consisted of industry-aligned solutions that were pre-packaged using a 
broad set of IBM software and hardware. IBM had deep domain knowledge across a range of industries 
and had software solutions built around industry-specific frameworks to solve industry-specific 
challenges. These solutions fell broadly under the following groups:  
 
1. Business Analytics solutions such as business intelligence, predictive analytics and analytical 

decision management. These solutions analyzed massive amounts of past data and provided insights 
to help organizations make more informed and optimized decisions.  

2. Collaboration Solutions such as instant messengers, virtual meeting rooms, email systems and 
document management systems to help customers, partners and clients interact with each other to 
enhance productivity and efficiency.  

 
The middleware group products provided the software infrastructure that powered an enterprise software 
system. The IBM middleware group software fell under the following four brands: 
 
1. Information Management: Data Warehouse, Data Security and Data Governance software systems 

that enabled organizations to deliver proper information throughout the organization’s information 
supply chain.  

2. Tivoli: Network Management, Mobile Device Management and Enterprise Asset Management 
software systems that helped organizations to manage and optimize their IT infrastructure.  

3. WebSphere: Application Deployment and Business Process Management Software systems provided 
organizations with the ability to efficiently run their business applications.  

4. Rational: Application Development and Lifecycle Management tools helped organizations to 
accelerate development, delivery and maintenance of software systems to enhance productivity.  

 
IBM’s Rational Application Developer (RAD) and WebSphere Application Server (WAS) platforms had 
a high degree of interdependencies between them. In fact, IBM released every new major version of these 
products on the same date. Although the two products complemented each other, integrated tightly and 
enabled an end-to-end full solution for customers, each product’s strategy and development cycle was 
governed by independent business units that had different budgets, employees and resources.  
 
WAS, the result of IBM’s in-house development efforts in application servers, was first released in 1998. 
IBM subsequently released more than a dozen new versions of it over the past 14 years. RAD came into 
existence in 2005 after IBM, in 2003, acquired the Massachusetts-based Rational. IBM combined the 
software platform from Rational and IBM’s in-house application development platform to result in RAD. 
Both RAD and WAS were developed by hundreds of software developers across software development 
labs in the Americas, Asia and Europe. The complexity of building multimillion-dollar software globally 
meant that a tight collaborative working environment was essential to the success of the two products and 
the broader IBM Corporation.  A

ut
ho

riz
ed

 fo
r 

us
e 

on
ly

 in
 th

e 
co

ur
se

 C
M

P
T

 6
41

  I
nf

or
m

at
io

n 
T

ec
hn

ol
og

y 
fo

r 
M

an
ag

er
s 

at
 U

ni
ve

rs
ity

 C
an

ad
a 

W
es

t t
au

gh
t b

y 
A

dr
ia

n 
 M

ite
sc

u 
 fr

om
 J

an
 0

5,
 2

01
7 

to
 M

ar
 2

3,
 2

01
7.

U
se

 o
ut

si
de

 th
es

e 
pa

ra
m

et
er

s 
is

 a
 c

op
yr

ig
ht

 v
io

la
tio

n.



Page 4 9B13E019 
 
 
While the WAS product allowed companies to efficiently and securely run their Java-based business 
applications, the RAD product helped software developers to create and maintain the Java applications 
that ran on the WAS family of products. Revenue from selling these two products’ software licences 
could range from tens of thousands of dollars to millions of dollars. The sales of software licences in turn 
drove IBM’s services and maintenance line of business that earned IBM additional revenue in the range 
of tens of thousands of dollars to millions of dollars.  
 
 
THE SOFTWARE DEVELOPMENT PROCESS 
 
A software development project could span from three to 15 months, depending on the complexity and 
scope of the project. Large–scale, sophisticated software development teams typically comprised software 
architects, programmers, testers, product managers and project managers. With the proliferation of the 
Internet, members of a software team could be distributed across various different locations. Software 
projects were highly process-driven because a lack of process typically led to delays, poor quality and an 
increase in project cost.  
 
Software Systems were developed in various phases that included requirement analysis, design, 
implementation and validation. Although every software development method incorporated these phases, 
the execution of these phases in the software development cycle varied across the different development 
methods.  
 
In the requirement analysis phase, software architects and software product managers focused on 
understanding and gathering customer requirements. Although customers believed that they knew their 
requirements well, at this stage, requirements were typically ambiguous and incomplete. Using their vast 
experience, software architects injected clarity into the customer requirements to build a solid definition 
of the problem that the customer needed to solve.  
 
During the design phase, software architects developed high-level, abstract solution architecture for the 
problem. The solution architecture defined how the different components of the software system would 
interact with each other. At this stage, the developers determined the engineering details, such as the 
different operating systems the software system would support, the type of programming language to use, 
and the algorithms and data structures to use. Developing a sound design upfront was important, as 
changes to the design later in the development could be costly and sometimes impossible to implement.  
 
During the implementation phase, the software engineers converted the solution architecture captured in 
the design phase into a working software system. The focus of this phase was to build, with minimal bugs 
or defects, a software system that was flexible, scalable and conformed to both the customer’s 
requirements and the software architect’s design plan. Any defects in the system needed to be caught as 
early as possible; when identified too late, defects were both costly and difficult to fix.  
 
The validation phase, more commonly known as the testing phase, ensured that a high-quality software 
system was delivered to customers. Although software developers made every effort during the 
implementation phase to ensure that they developed a bug-free software system, it was an impossible 
task, as software systems were highly complex and developed by hundreds of different software 
developers. Even the most experienced software developers could not judge the various different 
scenarios under which a customer would use the software. Software testers were required to run rigorous 
test scenarios on the system and report any defects found to the development team. The development 
teams, in turn, fixed the defects and tried to ensure that they didn’t introduce any additional defects or A

ut
ho

riz
ed

 fo
r 

us
e 

on
ly

 in
 th

e 
co

ur
se

 C
M

P
T

 6
41

  I
nf

or
m

at
io

n 
T

ec
hn

ol
og

y 
fo

r 
M

an
ag

er
s 

at
 U

ni
ve

rs
ity

 C
an

ad
a 

W
es

t t
au

gh
t b

y 
A

dr
ia

n 
 M

ite
sc

u 
 fr

om
 J

an
 0

5,
 2

01
7 

to
 M

ar
 2

3,
 2

01
7.

U
se

 o
ut

si
de

 th
es

e 
pa

ra
m

et
er

s 
is

 a
 c

op
yr

ig
ht

 v
io

la
tio

n.



Page 5 9B13E019 
 
 
break existing functionality during the code fix. The latter was known as a regression defect. As the test 
phase neared completion, the software system became stable, robust and high in quality.  
 
After the testing phase was completed, the project team moved the project into “code freeze,” the stage at 
which software developers could not add any new code. Code freeze was important to ensure that no new 
defects were introduced to a robust system. Projects were also moved into code freeze to help move the 
project forward to completion and release by rejecting any addition of code.  
 
 
THE WATERFALL SOFTWARE DEVELOPMENT METHOD 
 
The waterfall software development method was a traditional software development process in which 
software was developed in a rigid and sequential style. The development process started at the top with 
the requirement phase and sequentially continued on to the next phases lower in order. The process never 
moved onto the next phase until the current phase was fully completed. For example, implementation or 
coding never started until the design was fully completed (see Exhibit 3).  
 
Proponents of this method believed that the waterfall method forced project teams to fully understand a 
customer’s requirements and to build a solid design plan that was set in stone. They believed that this 
method saved time, money and effort, as late-stage changes were difficult to implement. However, 
opponents of this method believed that it was impossible to perfect a particular phase before moving onto 
the next phase. They argued that software architects, in the design phase, might not be able to predict 
potential future implemental difficulties that could arise in the implementation phase, leading to an 
inevitable change in design in the later stages. Another issue was that customer and stakeholder 
requirements continued to evolve, which forced the development team to alter their architecture, design 
and implementation. Finally, the waterfall method did not allow software testers to test the system until 
after the implementation was fully completed. As a consequence, defects in the software system were 
sometimes discovered very late, and late-stage defects were extremely difficult or even impossible to fix 
due to the complexity in the system.  
 
The waterfall software development method had worked for many years, but lately had fallen out of 
favour. In recent years, increased business competition and evolving customer demands had resulted in 
businesses becoming highly dynamic and fast-paced. To support these changing business processes 
required changes in computer software systems. However, the waterfall method did not accommodate 
changing requirements during the middle of the development cycle.  
 
 
THE ITERATIVE SOFTWARE DEVELOPMENT METHOD 
 
An alternate to the waterfall development method was the agile iterative development method. In the agile 
iterative development method, software was developed in iterations because software requirements 
evolved as the development cycles progressed (see Exhibit 4). Moreover, as the name suggests, an agile 
iterative method allowed development teams to easily respond to evolving and changing customer 
requirements. The focus of this method was to develop high-quality working software in small 
increments, allowing the project development team to learn from previous iterations. The working 
software could also be distributed to the various stakeholders to gather feedback and to allow for any 
corrections or changes to be made in the development cycle as early as possible. In the waterfall method, 
it would not be possible to incorporate any changes after receiving feedback.  
 

A
ut

ho
riz

ed
 fo

r 
us

e 
on

ly
 in

 th
e 

co
ur

se
 C

M
P

T
 6

41
  I

nf
or

m
at

io
n 

T
ec

hn
ol

og
y 

fo
r 

M
an

ag
er

s 
at

 U
ni

ve
rs

ity
 C

an
ad

a 
W

es
t t

au
gh

t b
y 

A
dr

ia
n 

 M
ite

sc
u 

 fr
om

 J
an

 0
5,

 2
01

7 
to

 M
ar

 2
3,

 2
01

7.
U

se
 o

ut
si

de
 th

es
e 

pa
ra

m
et

er
s 

is
 a

 c
op

yr
ig

ht
 v

io
la

tio
n.



Page 6 9B13E019 
 
 
IBM’s RAD development team decided to employ the agile iterative software development method to 
reap the aforementioned benefits. WAS did not provide the RAD team with all the requirements upfront 
during the 18-month product development cycle that began on June 25, 2009. Both WAS and RAD 
products were scheduled for release on December 22, 2010.  
 
Each iteration cycle lasted for six weeks: 
 
 Four weeks allotted for the planning, design and implementation phase 
 Two weeks allotted for the testing phase 
 
Through the multiple iterations within the 12-month development cycle, the product development team 
was required to deliver all the features that IBM had committed to develop. The goal of each iteration was 
to develop a subset of features that were of high quality. Quality was extremely important, and it was key 
to being able to ship the working software to customers to gather feedback.  
 
During the initial four-week period of the iteration, software architects and developers created the design 
document that contained the solution architecture for the subset of features under consideration for 
development. In the latter part of that four-week period, software developers would be busy writing code, 
and software testers used the design document to develop the test plan and test scenarios. The test plan 
and scenarios needed to be approved by the various stakeholders to ensure that a comprehensive test plan 
was developed. At the end of the four weeks, the iteration moved into the test phase. Software testers ran 
the test scenarios and reported any defects they found to the development team. The defects were fixed 
within the two-week test phase window. If a defect could not be fixed in the current iteration and if it 
rendered a particular feature to be non-functional, the code for the entire feature was backed out from the 
software system. This practice was consistent with the ideology that any feature developed in iteration 
should be fully functional as if it were ready to be released to a customer. The fix for the defect and the 
feature that was rendered non-functional would be deferred to the next iteration. The next iteration’s 
planning and design team would take into consideration the time and resources needed to fix the defects 
and enhancements from the previous iteration.  
 
The iteration would repeat in similar style until all the features requested had been developed and tested 
for quality. At the end of the final iteration and once the software system was deemed to be both stable 
and of high quality, the project team would move the development cycle into code freeze.  
 
 
DECISION 
 
On November 10, 2010, Mayor held a meeting with Lalonde to discuss a new requirement received by a 
customer. The customer was a retail company and had purchased its first IBM product two years earlier. 
The customer had also bought software and services from a variety of IBM competitors in the past, 
including Oracle and HP; thus, its software ecosystem had been developed using a variety of different 
vendors.  
 
If the feature were to be developed by WAS, it would help the WebSphere business earn an additional 
$30 million in revenue. A corresponding feature in RAD would allow Rational to earn $10 million in 
revenue. In total, the software deal would earn IBM an additional $40 million in fiscal 2010. If both 
features were not delivered, IBM would lose out on $40 million in revenue because the customer would 
only buy the products if both RAD and WAS developed the required features.  
 A

ut
ho

riz
ed

 fo
r 

us
e 

on
ly

 in
 th

e 
co

ur
se

 C
M

P
T

 6
41

  I
nf

or
m

at
io

n 
T

ec
hn

ol
og

y 
fo

r 
M

an
ag

er
s 

at
 U

ni
ve

rs
ity

 C
an

ad
a 

W
es

t t
au

gh
t b

y 
A

dr
ia

n 
 M

ite
sc

u 
 fr

om
 J

an
 0

5,
 2

01
7 

to
 M

ar
 2

3,
 2

01
7.

U
se

 o
ut

si
de

 th
es

e 
pa

ra
m

et
er

s 
is

 a
 c

op
yr

ig
ht

 v
io

la
tio

n.



Page 7 9B13E019 
 
 
The software development cycles of RAD and WAS were both about to enter into their final iterations. 
The WAS team had secured approval allowing it to write additional code to develop the new feature 
during the final iteration. Mayor’s research indicated that the WAS group could safely add the new 
feature without compromising product quality and without delaying the product release date. If Lalonde’s 
team were to add the new feature, Lalonde would need to seek approval to write code during the final 
iteration. Moreover, Lalonde needed to decide whether it was worth risking the quality of the product and 
release date by adding new code during the development cycle’s final iteration. IBM had commitments 
and contracts with customers to release the product by the release date. Lalonde also needed to understand 
the impact his decision would have on IBM’s 2015 roadmap. What effect, if any, would it have on future 
business opportunities with this customer? Could developing this feature help IBM win this customer 
over from its competitors and retain the customer as a loyal IBM customer?  
 
Another option would be to develop a prototype of the feature requested by the customer that would 
provide a subset of the functionality. This option would not only minimize the risks of delaying the 
product release and of inadvertently introducing any potential defects but would also provide the 
customer with a subset of the functionality that had been requested. This option would also help IBM to 
minimize the revenue loss that it would have been able to generate if it had been able to deliver the 
complete feature. However, IBM would need to convince the customer to accept the prototype at its 
current stage and wait for the full feature to be delivered in the future. If the customer disagreed, IBM 
would jeopardize losing the $40 million in revenue.  
 
  

A
ut

ho
riz

ed
 fo

r 
us

e 
on

ly
 in

 th
e 

co
ur

se
 C

M
P

T
 6

41
  I

nf
or

m
at

io
n 

T
ec

hn
ol

og
y 

fo
r 

M
an

ag
er

s 
at

 U
ni

ve
rs

ity
 C

an
ad

a 
W

es
t t

au
gh

t b
y 

A
dr

ia
n 

 M
ite

sc
u 

 fr
om

 J
an

 0
5,

 2
01

7 
to

 M
ar

 2
3,

 2
01

7.
U

se
 o

ut
si

de
 th

es
e 

pa
ra

m
et

er
s 

is
 a

 c
op

yr
ig

ht
 v

io
la

tio
n.



Page 8 9B13E019 
 
 

EXHIBIT 1: REVENUE AND PROFIT COMPARISON OF DIFFERENT IBM BUSINESS SEGMENTS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* Includes Global Business Services and Global Technology Services 
 
Source: IBM annual reports 

 
  

Revenue (in millions) 2000 2010 

Global Services * 
Revenue 
Pre-tax Profit/(Loss) 

 
 $33,152 
 $4,517 

 
 $56,424 
 $8,137 

Software 
Revenue 
Pre-tax Profit /(Loss) 

 
 $12,598 
 $2,793 

 
 $22,485 
 $9,097 

Systems & Technology 
Revenue 
Pre-tax Profit /(Loss) 

 
 $37,811 

$2,702

 
 $17,973 

$1,586 
Global Financing  

Revenue 
Pre-tax Profit /(Loss) 

 
 $3,500 
 $1,176 

 
 $2,238 
 $1,959 

Other 
Revenue 
Pre-tax Profit /(Loss) 

 
 $1,372 
 $(297) 

 
 $750 
 $ (18) 

Total 
Revenue 
Pre-tax Profit /(Loss) 

 
 $88,430 
 $11,534 

 
 $99,870 
 $20,761 

A
ut

ho
riz

ed
 fo

r 
us

e 
on

ly
 in

 th
e 

co
ur

se
 C

M
P

T
 6

41
  I

nf
or

m
at

io
n 

T
ec

hn
ol

og
y 

fo
r 

M
an

ag
er

s 
at

 U
ni

ve
rs

ity
 C

an
ad

a 
W

es
t t

au
gh

t b
y 

A
dr

ia
n 

 M
ite

sc
u 

 fr
om

 J
an

 0
5,

 2
01

7 
to

 M
ar

 2
3,

 2
01

7.
U

se
 o

ut
si

de
 th

es
e 

pa
ra

m
et

er
s 

is
 a

 c
op

yr
ig

ht
 v

io
la

tio
n.



Page 9 9B13E019 
 
 

EXHIBIT 2A 
 

Top 5 Enterprise Software Vendors by Total Enterprise Software Revenue in 2010 
 
 
 
 
 
 
 
 
 
 
Source: Gartner 

 
 
 

EXHIBIT 2B 
 

Top 5 Server Vendors by Revenue in 2010 
 
 
 
 
 
 
 
 
 
 
Source: Gartner 

 
 
 

EXHIBIT 2C 
 

Top 5 Services Vendors by Revenue Estimate in 2009 
 
 
 
 
 
 
 
 
 
 
Source: Gartner 

 
 

Vendor Market Share 
Microsoft 22.4% 
IBM 10.4% 
Oracle 9.8% 
SAP 5.3% 
Symantec 2.3% 
Other Vendors 49.8% 
Total 100% 

Vendor Market Share 
HP 31.4% 
IBM 30.8% 
Dell 14.7% 
Oracle 6.3% 
Fujitsu 4.4% 
Other Vendors 12.3% 
Total 100% 

Vendor Market Share 
IBM 7.3% 
HP 4.1% 
Accenture 3.2% 
Fujitsu 3.1% 
CSC 2.5% 
Other Vendors 79.8% 
Total 100% 

A
ut

ho
riz

ed
 fo

r 
us

e 
on

ly
 in

 th
e 

co
ur

se
 C

M
P

T
 6

41
  I

nf
or

m
at

io
n 

T
ec

hn
ol

og
y 

fo
r 

M
an

ag
er

s 
at

 U
ni

ve
rs

ity
 C

an
ad

a 
W

es
t t

au
gh

t b
y 

A
dr

ia
n 

 M
ite

sc
u 

 fr
om

 J
an

 0
5,

 2
01

7 
to

 M
ar

 2
3,

 2
01

7.
U

se
 o

ut
si

de
 th

es
e 

pa
ra

m
et

er
s 

is
 a

 c
op

yr
ig

ht
 v

io
la

tio
n.


