STUDYDADDY

Get Homework Help From Expert Tutor

Get Hel.p

CHEG 1810

Spring 2017

MODULE 5 EXERCISE PROBLEM

PROBLEM STATEMENT:

Calculate the size (in horsepower, HP) of a pump required to move water moving at three different average velocities of 5,10, and 15 feet per second through a 5,000 -foot long pipe with a 1 -inch inside diameter. Assume that the viscosity of water is 0.01 poise at room temperature and that the pump has an efficiency of 0.70 . Create one Mathcad worksheet file for each of the velocities to be tested. Show all your complete solutions.

PROBLEM SOLVING STEPS TO FOLLOW:

[1] Calculate the Reynolds Number or Re using the formula:

$$
R e=\frac{D_{i} V_{\text {avg }} \rho}{\mu}
$$

where $\mathrm{Re}=$ Reynold's number, D_{i} is the inside diameter of the pipe, $\mathrm{V}_{\text {avg }}$ is the average velocity of the fluid, ρ (Greek letter rho) is the fluid density, and μ (Greek letter mu) is the fluid viscosity. Re is dimensionless so make sure that the units of the given values cancel out.
[2] Calculate the Fanning Friction Factor f using the formula:

$$
\frac{1}{f}=2.5 \ln \left(\operatorname{Re} \sqrt{\frac{f}{8}}\right)+1.75
$$

Note: This formula is applicable only if $\mathrm{Re}>60000$.
[3] Calculate the pressure drop across the pipe, assuming that the pipeline is purely horizontal using Bernoulli's equation for this system:

$$
\Delta P=4 f \frac{L}{D_{i}} \frac{\rho\left(V_{\text {avg }}\right)^{2}}{2}
$$

where $\Delta \mathrm{P}$ is the pressure drop in psi (pounds per square inch) and L is the pipe length. Make sure that your units are consistent.
[4] Solve for the energy per mass quantity required to overcome friction in the pipeline, h_{f}.

$$
h_{f}=\frac{\Delta P}{\rho}
$$

[5] Solve for the mass flow rate of the flowing fluid (water), w :

$$
w=V_{\text {avg }} A_{\text {flow }} \rho
$$

* $A_{\text {flow }}$ is the cross-sectional flow area of the pipe. If you know the inside diameter as given above, how can you calculate this?
[6] Solve for the required pump power, P_{p} :

$$
P_{p}=\frac{h_{f} w}{\eta}
$$

where η (Greek letter eta) is the pump efficiency.

STUDYDADDY

Get Homework Help From Expert Tutor

Get Hel.p

