

Lab #4: TRAPs and Subroutines – Memory Dump
Computer Organization

PURPOSE
In this lab, students will gain familiarity with the use of low-level subroutines, caller/callee

register saving policy, and TRAP calls.

ASSIGNMENT
Using the LC-3 simulator, you will construct an assembly-level program that prompts the user

for a starting address (in hex) and an ending address (in hex). Your program will then output the

contents of memory (in hex) between the provided ranges (inclusive).

Enter starting memory address:

x3000

Enter ending memory address:

x3001

Memory contents x3000 to x3001:

x3000 xF030

x3001 xF025

Example execution of the Memory Dump routine:

I/O for this routine requires that we develop a routine to enable the input of a 4-digit hex value

and a routine for displaying the contents of a 16-bit registers/memory location as a 4-digit hex

value. We will implement each of these routines as TRAPs.

• Input (Trap x40): A Trap routine (invoked as TRAP x40) that reads a 4-digit hex from the

keyboard and returns the value in R0. This trap may call other traps. You will develop

this trap routine and locate it in memory at address x4000.

• Output (Trap x41): A Trap routine (invoked as TRAP x41) that displays the contents of

R0 to the display as a 4-digit hex value. This routine should output exactly 5 characters:

a leading “x” and the 4 hex digits. Do not display a carriage return/line feed/end-of-line

as part of the trap call. This trap may also call other traps. You will develop this trap

routine and locate it in memory at address x5000.

Develop these TRAP routines and the use them to implement a program to perform memory

dumps (using the i/o format provided in the example above).

Note: The representation for output characters (ASCII) is different than the standard binary

representation of the value. For example, you may find it useful to note that the ASCII

representation for any single-digit value is #48 greater than the number itself. Thus, the ASCII

representation of the character 0 has value #48 (x30) while the ASCII representation of the

character 1 has value #49 (x31).

PROGRAM GRADING
Grades will be assigned out of 50 points as follows:

Input Routine (Trap x40):

• 10 points: 4-hex digit input: Your project must include an input routine that reads a 4-hex

digit input. It must properly translate the ASCII inputs into a 16-bit value returned in R0.

• 5 points: Error checking: Your input routine should verify that the input consist of exactly

4 hexadecimal characters. It should accept uppercase ASCII characters for the hex digits A-

F. If an error is detected, the routine must return the value x0000. (You can earn 2 extra-

credit points for correctly accepting either upper or lower case A-F digits.)

• 5 points: TRAP implementation: Your input routine should be implemented as a TRAP.

Please locate this routine starting at address x4000 in memory. Please execute this routine as

TRAP x40. The TRAP routine should not have any unexpected side-effects!

Output Routine (Trap x41):

• 10 points: 4-hex digit output: Your project must include an output routine that properly

displays for the user as a 4-hex digit value the contents of R0. The 4-digit value should have

an ‘x’ preceding it to indicate that it is a hex value.

• 5 points: TRAP implementation: Your output routine should be implemented as a TRAP.

Please locate this routine starting at address x5000 in memory. Please execute this routine as

TRAP x41. The TRAP routine should not have any unexpected side-effects.

Memory Dump (main) Routine:

• 5 points: Address input: The main routine must prompt the user to input a starting and

ending memory address. It should verify that the starting address is lower than the ending

address, and prompt the user to reenter the values if this is not the case, or if either input

value is not a proper 4-digit hex value.

• 5 points: Address output loop: Your project must be able to properly output (to the

console, in ASCII) the contents in the range of the specified start/end addresses. (See

example under assignment description).

Overall:

• 5 points: Documentation: Your code should be well documented and easy to follow. You

do NOT have to comment every line of code, but you should have high-level comments for

each 3-10 lines that represent a functional block of code. All major functional blocks should

be commented. Symbols should be meaningful. Sample execution must demonstrate the

functionality of your project.

DELIVERABLES

• You will need to implement and turn in four assembly language (.asm) files including: (1)

main.asm: the “main” program which performs the overall memory dump functionality, (2)

input.asm: the trap service routine for the input routine, (3) output.asm: the trap service

routine for the output routine, (4) tvp.asm: contents for the trap vector table necessary to

enable your routine. I will load assemble and load all four files before testing your routine.

No credit will be awarded for files that do not assemble.

