


INTRODUCTION

With the rapid advancement of technology,

complex work systems have evolved in which op-

erators must adapt their decision making and per-

formance in the face of dynamic, ever-changing

environments, concurrent task demands, time

pressure, and tactical constraints (Moray, 1997;

Sheridan, 2002). The assessment and prediction

of the mental workload associated with operating

such complex systems has long been recognized

as an important issue (e.g., Gopher & Donchin,

1986; Moray, 1979). Mental workload – or just

workload – is the general term used to describe

the mental cost of accomplishing task require-

ments (Hart & Wickens, 1990; Wickens, 1992).

Workload varies as a function of task demands

placed on the human operator and the capacity of

the operator to meet those demands (Gopher &

Donchin, 1986; Hopkin, 1995). High levels of

workload occur when task demands exceed oper-

ator capacity.

Research efforts in complex work systems such

as piloting (e.g., Wilson, 2002), unmanned aerial

vehicle control (e.g., Dixon, Wickens, & Chang,

2005), anesthesiology (e.g., Leedal & Smith, 2005),

railway signaling (e.g., Pickup et al., 2005), and

automobile driving (e.g., Recarte & Nunes, 2003)

have focused on identifying factors that influence

mental workload and techniques for measuring it.

In contrast, in the current paper we develop a the-

oretical model of operator strategic behavior and

workload management, within the context of en

route air traffic control (ATC), through which task-

related workload can be predicted within com-

plex work systems. The model we present takes

into account the changing task priorities and man-

agement of resources by operators as well as the

feedback that operators receive in response to their

input. In the next section, we explain the nature of
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the work performed by en route air traffic con-

trollers (ATCos) and provide an overview of our

approach.

OVERVIEW

Controlled airspace is divided into sectors. An

en route sector is a region of airspace that is typ-

ically situated at least 30 miles (~48 km) from an

airport for which an associated ATCo has respon-

sibility. ATCos have to accept aircraft into their

sector; check aircraft; issue instructions, clear-

ances, and advice to pilots; and hand aircraft off

to adjacent sectors or to airports. The radar screen

displays characteristics of the sector (e.g., bound-

aries and airways), the spatial position of aircraft,

and vital flight information (identifiers, altitude,

speed, flight destination). When the aircraft leaves

the airspace assigned to the ATCo, control of the

aircraft passes on to ATCo controlling the next

sector (or to the tower ATCo). As is typical in

many real-world complex systems, this environ-

ment imposes multiple concurrent demands on the

operator. As Gronlund, Ohrt, Dougherty, Perry,

and Manning (1998) described it, “In the en route

air traffic control environment (involving the high-

speed and high-altitude cruise between takeoff

and landing), the system that confronts the air traf-

fic controller comprises a large number of aircraft

coming from a variety of directions, at diverse

speeds and altitudes, heading to different desti-

nations. Like most complex, dynamic systems,

this one cannot be periodically halted while the

controller takes a brief respite” (p. 263).

ATCos have two main goals. The primary goal

is to ensure that aircraft under jurisdiction adhere

to International Civil Aviation Organization

(ICAO) mandated separation standards. For ex-

ample, one of the most common separation stan-

dards requires that aircraft under radar control be

separated by at least 1,000 feet vertically (2,000

feet above 29,000 feet, unless reduced vertical

separation minima apply) and 5 nautical miles

horizontally. The secondary goal is to ensure that

aircraft reach their destinations in an orderly and

expeditious manner. These goals require the ATCo

to perform a variety of tasks, including monitoring

air traffic, anticipating loss of separation (i.e., con-

flicts) between aircraft, and intervening to resolve

conflicts and minimize disruption to flow. (For an

extensive compilation of the tasks and goals of en

route control, see Rodgers & Drechsler, 1993.)

Total world airline scheduled passenger traffic

in terms of passenger-kilometers is projected to

grow at an annual average rate of 4.4% over the

period 2002 to 2015, according to forecasts pre-

pared by the ICAO (2004). In the United States

alone, the number of aircraft handled by ATC

centers is expected to increase from 46.2 million

in 2004 to more than 60.2 million in 2016 (Feder-

al Aviation Administration, 2005). To accommo-

date predicted traffic growth there is a need to

increase en route airspace capacity through the

introduction of new air traffic management sys-

tems (e.g., free flight) or the adaptation of existing

airspace designs (e.g., sector boundaries), con-

troller tools (e.g., conflict resolution), and proce-

dures (e.g., reduced separation minima). The

consensus among research and operational com-

munities is that it is important to understand the

factors that drive mental workload if they are to

improve airspace capacity (Christien, Benkouar,

Chaboud, & Loubieres, 2003; Majumdar, Ochieng,

McAuley, Lenzi, & Lepadatu, 2004).

Most research has focused on identifying char-

acteristics of the air traffic picture that create task

demand for ATCos (e.g., Grossberg,1989; Kirwan,

Scaife, & Kennedy, 2001; Manning, Mills, Fox,

& Pfleiderer, 2001). These characteristics include

the number of aircraft in transition though a sec-

tor, the number of aircraft changing altitude, and

the number of potential conflicts. Several research

groups have attempted to predict mental workload

on a moment-to-moment basis by using linear

combinations of task demand factors as predic-

tors. The resulting sets of task demand factors are

known as dynamic density metrics. Studies have

shown that the dynamic density of the airspace at

a given moment accounts for approximately half

the variance in workload at that point in time

(e.g., Kopardekar & Magyarits, 2003; Laudeman,

Shelden, Branstrom, & Brasil, 1998). In psycho-

logical terms, this represents relatively strong pre-

diction. In practical terms, however, a significant

proportion of variance remains unaccounted for.

Furthermore, one goal of workload modeling is

to allow ATC providers to predict workload levels

ahead of time in order to allow them to put work-

load management strategies in place. For example,

this may include splitting a sector or introducing

flow restrictions. However, to date, dynamic den-

sity metrics have been unable to accurately pre-

dict ATCo workload ahead of time (Kopardekar

& Magyarits, 2003; Majumdar & Ochieng, 2002;
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Masalonis, Callaham, & Wanke, 2003). Many re-

searchers argue that these limitations stem from

the fact that there is no simple linear relationship

between task demand and workload (e.g., Athènes,

Averty, Puechmorel, Delahaye, & Collet, 2002;

Chatterji & Sridhar, 2001). Moreover, these re-

searchers view workload as an emergent property

of the complex interaction between the ATCo and

the air traffic situation, rather than as a simple

outcome of task demand inputs at a single point

in time.

The approach to predicting ATCo mental work-

load that is presented in the current paper is in line

with these views. According to Sperandio (1971),

workload is not something imposed upon a pas-

sive ATCo but, rather, is something the ATCo

actively manages. He proposed a model in which

changes in strategy (primarily resource manage-

ment) allow ATCos to regulate how task demands

are transformed into workload, thus keeping

workload within acceptable limits. In a paper that

deserves to be better known, Rouse, Edwards, and

Hammer (1993) took a similar view, modeling

workload as a feedback control process driven by

subjective mental workload. Several current re-

search groups agree with Sperandio’s (1971) view

that a relationship between task demand and work-

load can be better understood by considering how

ATCos use strategies to manage their resources

and regulate their workload (Athènes et al., 2002;

Averty, Collet, Dittmar, Vernet-Maury, & Athènes,

2004; Cullen, 1999; Hilburn, 2004; Histon &

Hansman, 2002; Majumdar et al., 2004). Another

key aspect of Sperandio’s (1971) approach is that

the effect of ATCo control actions on the system

is fed back to the ATCo, such that future task de-

mands are actively regulated by the ATCo (Pawlak,

Brinton, Crouch, & Lancaster, 1996).

In the current paper, we present a model of

mental workload that puts ATCos in the loop with

air traffic events, reacting to the consequences of

their own proactive behavior. Without denying the

validity of the task demand approach, we argue

that the link between task demand and workload

is largely connected to the manner in which ATCos

manage their resources. We begin by outlining a

general model of workload in ATC and contrast

it with previous approaches. We then review task

demand research in ATC. A characteristic of this

research that limits its interpretability is the ex-

tremely large list of methods and task demand

factors that have been reported. (For exhaustive

reviews, see Hilburn, 2004; and Mogford, Gutt-

man, Morrow, & Kopardekar, 1995.) The model

presented in this paper provides a framework for

integrating this literature and studying its poten-

tial strengths and shortcomings. We then turn our

attention to the smaller body of research that has

focused on ATCo control strategies (e.g., Amaldi

& Leroux; 1995; Histon & Hansman, 2002) and

to task models that have been built to simulate the

performance of ATCos (e.g., Callantine, 2002;

Leiden, Kopardekar, & Green, 2003). Finally, we

review models in which researchers have attempt-

ed to integrate task demands with human perfor-

mance models in order to predict workload (e.g.,

Averty et al., 2004; Cullen, 1999).

MENTAL WORKLOAD MODELING
ARCHITECTURES

In this section we outline different modeling

architectures that have been used to understand

ATCo mental workload. At the end, we present the

architecture that guides our review of the litera-

ture that follows.

Common Architectures

Aprevalent model in ATC mental workload re-

search is that different properties, or task demands,

of the air traffic situation will pose problems of

different levels of complexity to the ATCo and,

depending on the ATCo’s skill, experience, and

strategy, will produce different levels of subjective

workload. This is effectively an open-loop model,

as shown in Figure 1. Variants of this general open-

loop architecture have been used to model sources

of ATCo workload. For example, Hilburn and

Jorna’s (2001) model shows system factors com-

bining to create task demand, which, in accordance

with operator factors such as skill, strategy, and

experience, will lead to some degree of workload.

Similarly, Mogford et al.’s (1995) model depicts

a relationship between source factors (objective

complexity, air traffic patterns, sector character-

istics) and workload being mediated by quality

of equipment, individual differences, and ATCo

strategies. Both these models acknowledge that

ATCo strategy can influence workload. Neverthe-

less, researchers using these models as frame-

works have tended to focus on whether individual

aspects of the ATC environment affect workload.

We argue that the tendency to seek input-output

relations (“does increasing the number of aircraft
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increase workload?” or “how does strategy influ-

ence the impact of the number of aircraft on work-

load?”) fails to take into account fully the goals

and management of resources by the ATCo and

feedback that the ATCo receives from the system

in response to his or her input.

Sperandio’s Architecture

It is interesting to contrast the aforementioned

models with that of Sperandio (1971), shown in

Figure 2. Again, task demand is on the left and

mental workload on the right. Consistent with the

previous two models, Sperandio (1971) proposed

that ATCo strategy is an intervening variable be-

tween task demand and the work achieved and that

the ATCo selects strategies to keep mental work-

load within acceptable limits. However, in contrast

to the models mentioned in the previous para-

graph, the Sperandio (1971) model includes two

feedback control loops. First, variation in mental

workload resulting from work methods has,

through feedback, a regulating effect on the choice

of work methods (Feedback Loop 1). Second, the

work method used in response to perceived task

demands regulates the task demand encountered

in the future (Feedback Loop 2). Sperandio (1971)

emphasized that it is the change in workload, not

the change in task demand, that explains the

change in strategy. The change in strategy changes

what information is extracted from the airspace

and thus affects workload. The relationship among

task demand, strategy, and workload is adaptive

and so can be shown only in a feedback control

diagram, as shown in Figure 2. This position is

consistent with that of Rouse et al. (1993) but is

in contrast to much subsequent research in which

mental workload is predicted from objectively

measured characteristics of the airspace, tuned by

strategy and other factors.

A Systems Approach to Modeling Mental
Workload

The basis of our approach is that the ATCo is

in a continuous relationship with a dynamic world

and is an adaptive element in that world (Athènes

et al., 2002; Pawlak et al., 1996; Sperandio, 1971).

As a result, mental workload cannot be a function

solely of task demands; it is also a function of the

strategy the ATCo uses to manage traffic and

whether the strategy, once invoked, has provided
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Figure 1. Generic form of an open-loop model of mental workload implicitly adopted in many studies of ATCo men-
tal workload.
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operator’s strategies and regulating effects on workload, J. C. Sperandio, Ergonomics, (1971), Taylor & Francis Ltd,
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a comfortable level of control over task demands.

In the next section, we work through the ATC lit-

erature with the help of the model that is shown in

Figure 3. In an adaptation of Sperandio’s (1971)

model, our model represents two control loops that

govern ATCo activity: first, the management of

workload by the internal reorganization of prior-

ities leading to a different strategy; and second,

the management of workload by explicit control

of the airspace. The work of the ATCo occupies

the shaded part in the centre of Figure 3, where-

as the world that the ATCo controls is shown in

the perimeter.

The model in Figure 3 simplifies the world

that the ATCo controls. It shows two aircraft,

which is the minimum needed to indicate that the

ATCo is concerned with managing relationships

among aircraft rather than controlling single air-

craft in isolation. One aircraft is at the top of Fig-

ure 3 and the other at the bottom. Each aircraft

receives instructions from the ATCo (see plus

signs [+] on links into adder symbols at top right

and bottom right of Figure 3). The pilot considers

the difference between the instruction and the air-

craft’s current flight profile (see minus sign [–]

on feedback loops coming into rightmost adder

symbols) and makes an appropriate adjustment

to the aircraft’s flight profile. The aircraft’s new

flight profile is combined with the flight profile of

all other aircraft (see two + signs entering adder

at left) and becomes the task demand fed back to

the ATCo. The ATCo can take action to change fu-

ture task demand fed back through the system

(e.g., by accepting aircraft early or by putting air-

craft in a holding pattern) or he or she can change

future task demand with cognitive strategies (e.g.,

by considering a set of aircraft as one for purpos-

es of control).

The ATCo remains aware of work to be done

by monitoring present task demands (see left of

Figure 3). The work to be done is translated into

actual work done through the control activities

performed. As Figure 3 suggests, a set of control

activities can be classified as a strategy. A strategy

can be described as a specific class of air traffic

management that achieves one or more objectives

(e.g., safety, orderliness, expeditiousness) with a

certain investment of time and effort. Selection
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Figure 3. Model of ATCo activity in which strategy is controlled through feedback and feedforward information about
mental workload. Work to be done represents how objective task demands are mentally represented by the ATCo.



PREDICTING MENTAL WORKLOAD 381

among strategies is driven by the relative priority

of the ATCo’s objectives as the work to be done

evolves over time (Kallus, Van Damme, & Ditt-

man, 1999; Kirwan & Flynn, 2002; Niessen,

Eyferth, & Bierwagen, 1999). The strategy chosen

will lead to a certain quality of control over the

situation, which will often reflect subjective time

pressure. For example, the contextual control mod-

el (COCOM) of Hollnagel (2002) and Hollnagel

and Woods (2005) distinguishes strategic, tactical,

opportunistic, and scrambled control as the result

of an operator’s subjective judgment of the rela-

tionship between time available for action (Ta) and

the time required to evaluate the situation (Te),

select a response (Ts), and perform the response

(Tr). In their COCOM model, strategic and tacti-

cal control are mostly proactive, whereas oppor-

tunistic and scrambled control are mostly reactive.

An ATCo will work to achieve strategic control

and avoid scrambled control as much as possible.

Figure 3 indicates that prioritization drives

control activities/strategies. Prioritization refers

to the professional set of values that guide control

of air movements at any point, such as safety,

orderliness, and expeditiousness. Prioritization,

in turn, is driven by metacognitive factors such as

awareness of time available to perform tasks,

anticipation of future difficulties, and the ATCo’s

knowledge of his or her capacity. However, we do

not assume that this is a conscious process. In-

stead, prioritization is a consideration satisfied

directly or indirectly through control action. The

strategy may be a learned response that is not open

to introspection, and it may not require explicit

consideration of safety, orderliness, or expedi-

tiousness. However, this does not remove the fact

that strategies will always reflect some balance of

priority among safety, orderliness, and expedi-

tiousness. The selection of strategy will be logi-

cally guided by the appropriate priority even if the

priority is not consciously accessed.

Focusing in particular on time, Schmidt (1978)

predicted ATCo mental workload with a queuing

theory model based on the relationship between

the frequency of observable tasks that require de-

cisions/actions and the time required to make these

decisions/actions. More recently, Hendy, Liao,

and Milgram (1997) used a simulated ATC task and

modeled overall workload as a univariate function

of time pressure. Time pressure, in turn, was mod-

eled as the ratio of time available to time required,

also expressible as the ratio of the information-

processing rate demanded by a task and the max-

imum information-processing capacity of the

ATCo. Performance data were well matched by

the model. Most recently, Rantanen and Levinthal

(2005) demonstrated that an ATCo’s time to first

intervention in resolving conflicts was faster when

the ratio of time to act to the duration of a window

of opportunity for action was small – in other

words, when there was less discretionary time.

The dashed lines within the shaded ATCo part

of Figure 3 indicate that metacognition can be

influenced by both feedforward and feedback sig-

nals. Looking at feedforward (at left), the ATCo

may be aware that a large number of aircraft are

about to enter the sector and thus adjusts his or her

strategy for handling traffic already on frequency.

Looking at feedback (at right), the ATCo may be

aware that the quality of actual work done may

have been compromised by time pressure and thus

adjust priorities toward achieving safety at the

possible expense of expeditiousness (e.g., by rear-

ranging the trajectories of aircraft in order to min-

imize monitoring and coordination requirements).

The adder to the right of metacognition in Figure

3 shows that the ATCo may notice differences

between the work to be done and the actual work

that is getting done, which will also trigger a meta-

cognitive response. For example, the ATCo may

realize that a heavy communication load is mak-

ing him or her fall behind in dealing with work to

be done, yet an even heavier communication load

is anticipated. A rearrangement of priorities may

offer a control strategy that has a less intense com-

munications load. In these ways the model in Fig-

ure 3 represents the fact that ATCos behave and

react to the consequences of their behavior – in

respect both to the perceived discrepancy between

current goals and system state and to the ATCo’s

understanding of his or her own capacity – and

that these processes drive mental workload.

In the following sections we review research

on the relationships between task demand and

mental workload and between operator capacity

and mental workload. Then we review research

that combines the two in ways that are at least par-

tially consistent with the model in Figure 3.

TASK DEMANDS AND MENTAL 
WORKLOAD

Research concerning the relationship between

task demand and mental workload has had a long
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history, dating back more than 40 years (Arad,

1964; Couluris & Schmidt, 1973; Davis, Dana-

her, & Fischl, 1963; Hurst & Rose, 1978; Schmidt,

1976). This research has focused on uncovering

properties of the air traffic environment that con-

tribute to cognitive complexity and, via tuning fac-

tors such as skill, strategy and experience, result

in workload (see Figure 1). The task demand liter-

ature, in its own right, provides a solid basis from

which to model the complexity of task demands

(work to be done) in the ATC system. Researchers

have expended great effort in developing predic-

tive models based on task demand, and the fact

that these models have been able to account for

significant variance in ATCo workload warrants

a state-of-the-art review and synthesis. We main-

tain, however, that focusing only on task demand

overlooks the reciprocal interactions presented in

Figure 3. Subsequently, we examine whether the

task demand literature explicitly or implicitly mod-

els these aspects of control, and we outline con-

tradictions in the literature that result from the

failure to take a systems view.

Our review of task demand research is sum-

marized in Table 1. The material is drawn from

government and contractor technical reports, op-

erational reviews, journal articles, and book chap-

ters. Much material originates in the United States

and Europe, primarily from the Federal Aviation

Administration, the National Aeronautics and

Space Administration (NASA), and the European

Organisation for the Safety of Air Navigation

(EUROCONTROL). During the review process,

we found that several aspects of task demand

research limited its interpretability. Two valuable

surveys of research relating to task demand (Hil-

burn, 2004; Mogford et al., 1995) do not explicit-

ly address these issues. These constraints, and how

we dealt with them, will be briefly discussed next.

First, systematic comparison among studies

was complicated by the wide variety of research

methodologies reported. As presented in Table 1,

these methodologies include knowledge elicita-

tion techniques such as verbal protocol analysis

(e.g., Pawlak et al., 1996), experiments in which

researchers made predictions a priori about how

mental workload will vary with systematic manip-

ulation of task demand (e.g., Boag, Neal, Loft, &

Halford, 2006), and correlational studies in which

researchers extracted values for task demand fac-

tors from flight data and correlated these values

with workload on a post hoc basis (e.g., Kopar-

dekar & Magyarits, 2003). A second characteris-

tic of task demand research that limits cross-study

comparison is the wide variety of workload mea-

sures used. An evaluation of the advantages and

disadvantages of each approach is beyond the

scope of this paper (see Farmer & Brownson,

2003; Hilburn & Jorna, 2001). However, Table 1

categorizes studies according to the workload cri-

terion employed. As is evident from Table 1, the

measurement of workload is far from uniform.

Table 1 reveals that most studies have focused

on identifying traffic factors. Traffic factors re-

flect the instantaneous distribution of air traffic in

a sector in terms of both the number of aircraft and

the complexity of their relationships. However,

ATCos can actively regulate the mental workload

associated with traffic factors by using economi-

cal control strategies. Researchers such as Hilburn

(2004) and Histon and Hansman (2002) identified

two further factors that influence the choice and

effectiveness of ATCo control strategies and which

are generally independent from traffic factors.

Airspace factors reflect the underlying structural

properties of the airspace (e.g., number of cross-

ing altitude profiles). Airspace factors constrain

the relationship between traffic factors and work-

load by shaping the evolution of air traffic and

creating predictable air traffic patterns that can be

exploited by ATCos. Operational constraints re-

flect operational requirements (e.g., restrictions of

available airspace) that place restrictions on ATCo

strategy and control action.

Traffic Factors Predicting Mental
Workload

Task demand research has typically focused on

explicit properties of the distribution of aircraft

that predict mental workload and are computed in

real time using radar track data or derivations

thereof. Of all the traffic factors, the aircraft count,

or the number of aircraft under control, is the most

powerful predictor of workload (e.g., Hurst &

Rose, 1978; Kopardekar & Magyarits, 2003; Man-

ning et al., 2001). High aircraft count leads to an

increase in workload because it increases the mon-

itoring, communication and coordination required

to handle aircraft in a safe, orderly, and expedi-

tious manner.

Density factors are derivatives of traffic count

that measure the horizontal and vertical distances

between aircraft and the way in which these dis-

tances change with time. Various measures of
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traffic density have been developed, including the

average horizontal (or lateral) separation distances

between aircraft (Chatterji & Sridhar, 2001) and

aircraft counts divided by sector volumes (Kopar-

dekar & Magyarits, 2003). These density measures

assume, perhaps erroneously, that all aircraft in

close proximity are noticed by the ATCo and there-

fore exert some influence on mental workload. In

reality, the influence of aircraft density on work-

load will depend on what the aircraft are doing in

relation to each other – for example, whether they

are converging or diverging. For this reason, den-

sity factors based on the minimum separations be-

tween pairs of aircraft are more sensitive (Chatterji

& Sridhar, 2001). Close future minimum separa-

tion between an aircraft pair will undoubtedly cap-

ture ATCo attention because of the likelihood of

a separation violation, reducing the ATCo’s capac-

ity to attend to other control tasks.

Although traffic count and density adequately

reflect the number of routine aircraft-associated

tasks that an ATCo has to perform within a certain

time frame, the complexity of air traffic is impor-

tant in determining the difficulty of the tasks or

events handled and thus the resulting mental

workload. ATCos report that they can handle rel-

atively large volumes of traffic if the aircraft are

flying on regular routes and the flow is orderly

(e.g., Amaldi & Leroux, 1995; Mogford et al.,

1995). In contrast, small volumes of traffic can

lead to overload if aircraft interact in complex

ways (Kallus, Van Damme, & Dittman, 1999;

Mogford et al., 1995). Complexity factors fall

into two categories. The first are commonly re-

ferred to as aircraft transition factors and capture

changes in an aircraft’s state in any of the three

axes of altitude (e.g., Lamoureux, 1999), speed

(e.g., Kopardekar & Magyarits, 2003), or heading

(e.g., Laudeman et al., 1998). Performance mix

of aircraft is also an important aircraft transition

factor (Schaefer, Meckiff, Magill, Pirard, & Aligne,

2001). In order to calculate the minimum separa-

tion between two aircraft in altitude transition,

the ATCo needs to know how fast the aircraft will

climb (or descend) relative to each other. Pre-

sumably, this job would be made harder by in-

creased variability in performance profiles.

The second set of complexity factors relates to

the number and nature of potential conflicts with-

in a sector. Potential conflicts emerge from the

combination of density and transition factors pre-

sent at any time. The influence of potential con-

flicts on mental workload depends on their spe-

cific properties. For example, Boag et al. (2006)

developed a “transitions metric” for assessing the

difficulty of judging whether a pair of aircraft will

be in lateral and vertical conflict at the same time.

If two aircraft are on converging flight paths, and

are both maintaining the same level, then the

ATCo simply needs to assess whether they will

violate the lateral separation standard. This prob-

lem is relatively simple because the ATCo need

consider only one transition (the transition into lat-

eral conflict). However, if the aircraft are chang-

ing levels, then the ATCo must assess when the

aircraft will violate and regain separation in one

dimension and also whether the aircraft will be in

conflict in the other dimension at the same time.

Up to four transitions (into and out of lateral and

vertical conflict) may be possible. The Boag et al.

(2006) transitions metric accounted for signifi-

cant amounts of variance in ATCos’ ratings of

complexity and workload. Imminent violations

of separation also increase workload (Chatterji &

Sridhar, 2001). The time available for an ATCo to

detect and respond to a potential conflict affects

how difficult the conflict is to resolve. A conflict

that develops quickly gives the ATCo only a lim-

ited time to act, creating significant time pressure.

Conflicts in close proximity to sector boundaries

(e.g., Pawlak et al., 1996) and/or high numbers of

surrounding aircraft (e.g., Kopardekar & Magyar-

its, 2003) also constrain how conflicts can be

resolved, reducing the number of options for

maneuvering.

Combining Task Demand Factors Into
Dynamic Density Metrics

Several research groups (Kopardekar & Mag-

yarits, 2003; Laudeman et al., 1998; Masalonis

et al., 2003) have used regression models to iden-

tify sets of factors that best predict mental work-

load and have created algorithms by weighting

these different factors according to their predictive

power. The resulting algorithms are commonly

referred to as dynamic density metrics. Dynamic

density has been defined as “the collective effort

of all factors, or variables, that contribute to sector-

level air traffic control complexity or difficulty at

any point in time” (Kopardekar & Magyarits,

2003, p. 1). The Laudeman et al. (1998) metric is

perhaps the best known, describing dynamic den-

sity as the sum of the density of traffic weighted

by the number of changes in speed, heading, and
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TABLE 1: Studies Predicting ATCo Mental Workload: Methods of Measurement and Summaries of Results

Authors Method Measures Task Demand Factors Systems View

Arad (1964) Correlational ATCo activity Traffic, airspace, and Sector boundaries aligned with standard flows reduce 
operational constraints the time pressure of control activities.

Boag et al. Experiment: part-task MW ratings Traffic The number of conflict boundary transitions increases 
(2006) simulation Complexity ratings MW because ATCos cannot reduce information set.

Buckley, DeBaryshe, Experiment: full task ATCo activity Traffic and airspace Airspace factors interact with traffic factors in deter-
Hitchner, & Kohn simulation mining MW; ATCos use airspace structure to simplify 
(1983) air traffic.

Chatterji & Sridhar Correlational: dynamic MW ratings Traffic Model incorporates cognitive aspects (e.g., time pres-
(2001) density sure) into choice of traffic complexity factors.

Couluris & Schmidt Experiment: Full task ATCo activity Airspace Using ATCo activity as measure of MW fails to take into 
(1973) simulation account the intent of control action.

Davis et al. (1963) Experiment: Full task ATCo activity Traffic Using ATCo activity as measure of MW fails to take into 
simulation account the intent of control action.

Galster et al. (2001) Experiment: Part-task MW ratings Traffic Delays in conflict detection impose constraints on 
simulation Secondary task conflict resolution.

Histon & Hansman Knowledge elicitation: live Complexity ratings Traffic, airspace, and Airspace factors interact with traffic factors in deter- 
(2002) observation and interview operational constraints mining MW; ATCos use airspace structure to simplify 

air traffic.

Hurst & Rose (1978) Correlational: full task ATCo activity Traffic Using ATCo activity as measure of MW fails to take 
simulation into account the intent of control action.

Kirwan et al. (2001) Knowledge elicitation: Complexity ratings Traffic, airspace, and ATCos use airspace structure to simplify air traffic.
group judgment operational constraints

Kopardekar & Correlational: unified Complexity ratings Traffic and airspace Airspace factors play an important role in predicting 
Magyarits (2003) dynamic density MW across sectors.

Lamoureux (1999) Experiment: part-task MW ratings Traffic MW is linked to the mental calculations and projections 
simulation involved in managing groups of A/C.

Laudeman et al. Knowledge elicitation: ATCo activity Traffic Acknowledged that variation in the intent of ATCo 
(1988) interview control action can influence the relationship between 

Correlational: dynamic ATCo activity and MW.
density



3
8
5

Manning et al. Correlational: ATCo activity MW ratings Traffic ATCo activity does not significantly predict MW over 
(2001) from routine flight data and above traffic count; fails to take into account the 

intent of control action.

Manning, Mills, Fox, Correlational: ATCo activity MW ratings Traffic No. and type of ATCo communications do not signifi-
Pfleiderer, & from routine flight data cantly predict MW; fails to take into account the intent 
Mogilka (2002) of ATCo communications.

Masalonis et al. Knowledge elicitation: Complexity ratings Traffic, airspace, and Metric unable to accurately predict MW ahead of 
(2003) interview operational constraints time; fails to take into account the influence of ATCo 

Correlational: dynamic control strategy/activity on future task demand that is 
density fed back through system.

Metzger & Parasur- Experiment: part-task MW ratings Traffic Delays in conflict detection impose constraints on 
aman (2001) simulation Secondary task conflict resolution.

Mogford et al. Knowledge elicitation: Complexity ratings Traffic, airspace, and Airspace factors and operational constraints play a role 
(1993) rating and ranking operational constraints in shaping the relationship between traffic factors and 

MW.

Pawlak et al. (1996) Knowledge elicitation: MW ratings Traffic, airspace, and Emphasis on factors that impact on the cognitive
verbal protocol technique Complexity ratings operational constraints activity of ATCos, as opposed to behavioral indicators 

(e.g., ATCo activity).

Schaefer et al. Knowledge elicitation: Complexity ratings Traffic, airspace, and Airspace factors interact with traffic factors in deter-
(2001) interview operational constraints mining MW.

Stein (1985) Experiment: full task MW ratings Traffic No. of handoffs (inbound and outbound) predict MW; 
simulation however, highly correlated with A/C count.

Wyndemere, Inc. Knowledge elicitation: MW ratings Traffic and airspace Metric included several airspace factors.
(1996) critical decision 

Correlational: dynamic
density

Note. MW = mental workload; A/C = aircraft.
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altitude; the proximity of aircraft; and the time un-

til predicted conflicts. This metric accounted for

22% of the variance in ATCo activity (a proxy for

workload) not predicted by aircraft count. Kopar-

dekar and Magyarits (2003) incorporated 23 fac-

tors from four published dynamic density metrics

to form a composite metric. This unified dynam-

ic density accounted for 39% of the variance in

ATCo complexity ratings, significantly more than

aircraft count alone.

Airspace Factors and Operational
Constraints Predicting Mental Workload

Airspace factors and operational constraints

are key contributors to ATCo task demand and

mental workload (Histon & Hansman, 2002; Kir-

wan et al., 2001). Airspace factors refer to the un-

derlying structural properties of the airspace,

whereas operational constraints refer to temporary

variations in operational conditions within the air-

space. Airspace factors constrain the relationship

between traffic factors and workload by shaping

the evolution of air traffic and creating predictable

air traffic patterns. Knowledge of these patterns

lets the ATCo use information-processing stra-

tegies that simplify air traffic management. Fur-

thermore, temporary variations in operational

conditions, such as communications limitations

(Mogford, Murphy, Yastrop, Guttman, & Roske-

Hofstrand, 1993), can restrict ATCo control action

and strategy.

Studies examining airspace factors have found

that the size of a sector can influence the mental

workload imposed by traffic factors (Arad, 1964;

Histon & Hansman, 2002). On the one hand, a

larger sector size will typically increase the num-

ber of aircraft in the sector and the number of po-

tential events that require attention. On the other

hand, events evolve faster in smaller sectors, and

limited space in a sector can reduce the options

for conflict resolution. Increased number of avail-

able flight levels can reduce workload because

they allow ATCos to maintain separation using

vertical separation (Histon & Hansman, 2002;

Kirwan et al., 2001). Traffic events occurring close

to the outside of sector boundaries are important

further determinants of workload (Couluris &

Schmidt, 1973; Histon & Hansman, 2002) be-

cause they can cause the ATCo’s “area of regard”

to be greater than the official dimensions of the

sector. Aircraft events occurring outside sector

boundaries require attention because they can

affect aircraft currently in the sector, increasing

the complexity of coordination (handoffs, point

outs) with adjacent ATCos (e.g., Kirwan et al.,

2001; Mogford et al., 1993). However, the pres-

ence of well-defined ingress and egress points

(Histon & Hansman, 2002) lets ATCos anticipate

problems, thus reducing workload.

The number, orientation, and complexity of

standard flows also influence the mental workload

imposed by traffic factors (Histon & Hansman,

2002; Schaefer et al., 2001). Standard flows are

aircraft flow patterns that emerge from underly-

ing airway structure, standardized procedures,

and other regular constraints such as ingress and

egress points. ATCos use their knowledge of stan-

dard flows to create important structure-based

abstractions that simplify the management of air

traffic (Histon & Hansman, 2002). For example,

ATCos can simplify the search process involved in

conflict detection by focusing on known crossing

points and/or known crossing altitude profiles be-

tween standard flows (Histon & Hansman, 2002;

Pawlak et al., 1996). Knowledge of these “hot

spots” can reduce the workload associated with

managing air traffic (Amaldi & Leroux, 1995;

Kallus, Van Damme, & Dittman, 1999).

Several operational constraints place restric-

tions on ATCo control action. For example, re-

strictions on available airspace can result from

convective weather, activation of special-use air-

space, or aircraft in holding patterns (Kirwan et

al., 2001; Mogford et al., 1993). Restrictions on

available airspace increase the likelihood of sep-

aration violations. In addition, restricted airspace

requires more precisely planned conflict resolution

strategies. Procedural restrictions, such as miles-

in-trail spacing, can also constrain traffic flow and

conflict resolution strategies (Histon & Hansman,

2002; Pawlak et al., 1996).

Because of practical constraints, weightings for

task demand factors are typically validated against

one or only a few sectors (Histon & Hansman,

2002), limiting the variation observed in airspace

factors and operational constraints. As a result, dy-

namic density metrics developed using specific

sectors perform less effectively when extended to

other sectors. However, two research groups have

recently incorporated airspace factors into their

metrics (Kopardekar & Magyarits, 2003; Masa-

lonis et al., 2003). For example, the Kopardekar

and Magyarits (2003) unified metric was devel-

oped across four sectors, and the metric performs



differently across them. Nevertheless, comparisons

across the different sectors revealed the contri-

bution of airspace factors. Factors with significant

predictive value included the altitude level of the

sector (high vs. low), the structure of the airspace,

and the size of the sector. It seems that if research-

ers wish to predict mental workload across sectors,

then airspace factors and operational constraints

will be important because they mediate the effect

of traffic factors on workload. However, if re-

searchers wish to predict workload within sectors,

then the airspace factors and operational con-

straints become less important.

Summary and Assessment

Research focusing on task demand factors has

shown that task demand accounts for a significant

amount of variance in mental workload. We sought

to develop our model of workload by investigating

how different task demand factors might affect

ATCos’selection of strategies for control and thus

affect workload. However, this was made difficult

by the lack of research examining how airspace

structure and aircraft configuration relate to the

selection of strategies for control, as depicted by

the model in Figure 3. We argue that a significant

limitation of the task demand approach is that it

views the ATCo as a passive recipient of task de-

mand. It does not explicitly take into account the

fact that ATCos can actively take steps that change

task demand, so as to keep workload at an accept-

able level. Without denying the importance of

task demands, we believe that workload might be

more strongly connected to the ATCo’s ability to

manage his or her cognitive capacity, as described

in the next section.

It is difficult to assess which aspects of task

demand are most closely causally related to men-

tal workload. One reason is multicollinearity.

Ideally each traffic factor in a predictive model

should contribute to workload relatively indepen-

dently of other traffic factors, but this is seldom so.

For example, in the Korpardekar and Magyarits

(2003) unified metric, traffic count appears in sev-

eral forms, such as sector volume (allowing more

aircraft), number of aircraft, and aircraft count

squared. However, the causal connection between

traffic count and workload might be mediated by

a number of complexity factors. For example, fac-

tors such as traffic density, number of speed tran-

sitions, number of conflicts, and number of aircraft

near sector boundaries all depend on traffic count.

In addition, under some conditions traffic count

may carry the key causal connection because of

the increase in low-level activities needed, where-

as under other conditions complexity properties

emerging from traffic count may carry the key

causal connection because of the need to resolve

complex traffic situations. In addition, many fac-

tors measuring the complexity of traffic situations

are closely related. For example, the number of po-

tential conflicts may depend on the number of

speed, heading, and altitude variations. Overall,

problems of multicollinearity make it difficult to

determine how task demand affects workload.

The problem with taking each possible task de-

mand predictor and putting it in a regression equa-

tion is that the relative importance of each predictor

depends on what other predictors have been in-

cluded in the equation.

Even if the problem of multicollinearity can be

resolved, task demand is still insufficient to ac-

count for mental workload. First, combinations of

task demand factors rarely account for more than

half the variance in workload or complexity rat-

ings (Kopardekar & Magyarits, 2003; Majumdar

& Ochieng, 2002). Although there may be objec-

tive and measurable features of sectors and aircraft

flow, the difficulty of controlling traffic is the

ATCo’s subjective experience. If ATCos have al-

ternative work methods for meeting increases in

task demand, there will not necessarily be a lin-

ear relation between task demand and workload

(Chatterji & Sridhar, 2001; Hilburn, 2004). Fur-

thermore, task demand approaches do not take

into account the ATCo’s intent when extracting

task demand predictors from radar track data. For

example, changes in aircraft altitude are weighted

so that they vary directly with workload. However,

an ATCo could have various reasons for issuing a

change in flight level, many of which may actual-

ly reduce workload (e.g., by ensuring separation).

A second reason that task demand is an insuf-

ficient basis for modeling mental workload is the

need to predict mental workload ahead of time. It

would be helpful to be able to predict probable

aircraft trajectories from their flight plans and

estimate the workload that the probable trajecto-

ries will impose on the ATCo. The problem is that

task demands change dynamically; ATCos change

the trajectories of aircraft when they intervene to

ensure separation and establish arrival sequences.

Furthermore, ATCos can reduce task demands in

downstream sectors by carrying out tasks that
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would otherwise have to be done in that sector

(giving descent clearances, implementing speed

control, etc.). As has been found by Kopardekar

and Magyarits (2003) and Masalonis et al. (2003),

a workload model that does not take ATCo activ-

ity into account may not be able to predict work-

load accurately in the near future, such as 1 hr

ahead.

A third reason for concern with task demand-

driven models of mental workload is that such

models are intended to predict whether workload

will interfere with the performance or effective-

ness of ATCos. The term performance refers to the

ability of ATCos to carry out their tasks (maintain

situation awareness, resolve conflicts, manage

departure flows, etc.), whereas the term effective-

ness refers to the outcomes that the ATCo achieves

(i.e., the safety, orderliness, and efficiency of traf-

fic flows: Neal, Griffin, Neale, Bamford, & Boag,

1998). Performance and effectiveness do not al-

ways decline as workload increases. Observations

of ATCos in an operational environment suggest

that whereas their ability to maintain an orderly

and efficient flow of traffic does decrease as

workload increases, their ability to perform tasks

such as detecting and resolving conflicts and man-

aging departures flows does not decline (Griffin,

Neal, & Neale, 2000). It appears that the rela-

tionships among workload, performance, and

effectiveness are complex and, possibly, contex-

tually specific.

Human performance models provide a way of

addressing these important issues. By building a

human performance model that simulates how the

ATCo carries out control tasks, it may be possible

to generate more accurate predictions of aircraft

trajectories and, hence, of future task demands.

Furthermore, by taking into account strategies that

ATCos use to minimize the amount of control ac-

tivity required to meet their objectives, one can

more accurately predict the effects of demands on

both mental workload and performance.

OPERATOR CAPACITY, STRATEGIES,
AND MENTAL WORKLOAD

As noted previously, and as Figure 3 suggests,

mental workload emerges not only from task de-

mands but also from how control activity is as-

sembled to meet task demands. Understanding

workload therefore involves understanding the

strategies that ATCos use to meet task demands.

Research in this area focuses on identifying cog-

nitive tasks, eliciting controller strategies, and at-

tempting to build computational models of ATCo

activity. In the next section we provide a brief

review of human performance models in ATC and

note how ATCos manage time pressure. We focus

on three main control tasks identified in cogni-

tive task analyses: the higher level control task of

maintaining situation awareness and the control

subtasks of detecting conflicts and resolving con-

flicts (Kallus, Van Damme, & Dittman, 1999; Neal

et al., 1998; Rodgers & Drechsler, 1993). Research

that has examined ATCo strategies is summa-

rized in Table 2.

Human Performance Models

Several models of ATCo performance have

been developed over the past decade (Callantine,

2002; Kallus, Van Damme, & Barbarino, 1999;

Leiden et al., 2003; Niessen et al., 1999). In gen-

eral, these models identify the control tasks that

ATCos perform, the order in which they carry

them out, and the time required and time available

to do so. Such models offer insight into sources of

mental workload.

Some human performance models are fairly

high level, providing a verbal description of be-

havior (Kallus, Van Damme, & Barbarino, 1999).

Others are based on formal architectures such as

Adaptive Control of Thought-Rational (Anderson,

1993) and have been validated with empirical data

(Leiden et al., 2003; Niessen et al., 1999). For ex-

ample, the human performance model developed

by Leiden et al. (2003) specifically focuses on

arrivals streams. Leiden et al. (2003) modeled

mental workload using the concepts of “task uti-

lization” and “idle utilization.” They identified

ATCo tasks, obtained estimates for how long each

task took to perform, and predicted how much

time sets of tasks would take under different lev-

els of traffic load. Task utilization, therefore, re-

flects the time required to accept aircraft, resolve

conflicts, provide metering, issue descent clear-

ances, handoff aircraft, and transfer communica-

tions. Idle utilization is all remaining time. Leiden

et al. (2003) used idle utilization as an indicator

of available capacity. To our knowledge, howev-

er, no studies have directly compared the validity

of workload predictions generated by such human

performance models with that of predictions gen-

erated by dynamic density metrics. A further dif-

ficulty with the Leiden et al. (2003) approach is
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TABLE 2: Summary of Empirical Studies Examining ATCo Strategy for Control Tasks

Authors Control Tasks Method Summary Results

Amaldi & Leroux (1995) Maintain SA Interview Group A/C into streams of traffic, selectively extract A/C data for conflict detection (altitude first); 
Conflict detection attend to critical points where conflicts have previously occurred; decision to intervene or not, and 
Conflict resolution timing, depends on judgment of conflict risk.

Bisseret (1971) Maintain SA Interview Regulate attention allocated to individual A/C (based on conflict status); selectively extract A/C 
Conflict detection Experiment data for conflict detection (altitude first).

Boudes et al. (1997) Conflict detection Interview Selectively extract aircraft A/C data for conflict detection.

Gronlund et al. (1998) Maintain SA Experiment Selectively attend to A/C (based on spatial position); selectively extract A/C data for conflict 
Conflict detection detection (altitude first).

Histon & Hansman (2002) Maintain SA Interview Classify A/C into standard and nonstandard flows; selectively extract A/C data for conflict detection 
Conflict detection Experiment (altitude first); attend critical points where conflicts have previously occurred.
Conflict resolution

Kallus, Van Damme, Conflict detection Interview Attend critical points where conflicts have previously occurred; refer to previously used conflict 
& Dittman (1999) Conflict resolution resolution strategies; under high workload resolve conflicts immediately (make safety first priority).

Kirwan & Flynn (2002) Conflict resolution Interview ATCo uses heuristics for resolving conflicts that minimize control activity.

Leplat & Bisseret (1966) Conflict detection Experiment Selectively extract A/C data for conflict detection (altitude first).

Means et al. (1988) Maintain SA Experiment Regulate attention allocated to individual A/C (based on amount of control previously exercised on A/C).

Neal et al. (1998) Conflict detection Interview Attend critical points where conflicts have previously occurred; refer to previously used conflict 
Conflict resolution resolution strategies.

Pawlak et al. (1996) Maintain SA Interview Group A/C into streams of traffic.

Redding et al. (1991) Maintain SA Interview Group A/C into streams of traffic.

Rantanen & Nunes (2005) Conflict detection Experiment Selectively extract A/C data for conflict detection (altitude first, heading second, speed third).

Roske-Hofstrand & Maintain SA Interview Group A/C into streams of traffic; selectively extract A/C data for conflict detection (altitude first).
Murphy (1998) Conflict detection

Seamster et al. (1993) Conflict detection Interview Classify A/C into standard and nonstandard flows; attend critical points where conflicts have 
Conflict resolution previously occurred; refer to previously used conflict strategies.

Sperandio (1971) Maintain SA Experiment Regulate attention allocated to individual A/C; group A/C into streams of traffic.

Sperandio (1978) Maintain SA Experiment Regulate attention allocated to individual A/C; group A/C into streams of traffic.

Weitzman (1993) Conflict resolution Interview Choice of conflict detection strategy depends on temporal proximity of the conflict, the geometry
of the conflict, and the certainty of the conflict.

Willems et al. (1999) Conflict detection Experiment Regulate attention allocated to individual A/C; selectively extract A/C data for conflict detection
(altitude first).

Note. A/C = aircraft; SA = situational awareness.
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that it does not estimate the time that ATCos spend

building and maintaining situation awareness.

Such cognitive activity contributes to workload,

but it is unobservable.

Using a human performance model similar to

that of Leiden et al. (2003), Callantine (2002)

emulated ATCo cognitive activity with a simple

set of heuristics for planning and decision mak-

ing. At the beginning of a processing cycle, the

Callantine (2002) model scans the environment

to detect tasks that need to be carried out. This is

referred to as “maintain situation awareness.”

The model then selects the task with the highest

priority and carries it out. Possible tasks include

carrying out a plan that has been developed previ-

ously, developing a plan to resolve a conflict, and

issuing a descent clearance. Aset of rules describes

how each of these tasks is carried out. A prelim-

inary evaluation of the Callantine (2002) model

demonstrated that it could handle relatively sim-

ple spacing problems in high-altitude sectors but

performed less well when handling merging traf-

fic in low-altitude sectors. Nonetheless, the results

are encouraging because they show that a simple

model can control traffic in a plausible manner.

The next step is to operationalize the concept of

mental workload within this type of model, but

that step has yet to be taken.

Time Pressure

Cognitive task analyses demonstrate that

ATCos are required to complete many tasks, many

of which must be time-shared (e.g., Cox, 1994;

Rodgers & Drechsler, 1993). According to an

information-processing model developed by

Hendy et al. (1997), subjective estimates of men-

tal workload are driven by the ratio of (a) the time

needed to process the information necessary to

make a decision to (b) the time available before the

decision has to be put into action. The most impor-

tant human constraint, then, is the maximum rate

at which work can be done. The competent ATCo

generally knows the rate at which he or she can

complete tasks, and this knowledge is actively

managed by the ATCo to avoid overload. ATCos

maintain acceptable levels of workload under

heavy task demand by seeking control strategies

that minimize the amount of control activity (e.g.,

planning, monitoring, coordinating) required to

meet their objectives and, if necessary, reordering

work priorities. According to Hendy et al.’s (1997)

model, these changes help to reduce the amount

of information that has to be processed. In the next

sections we examine how ATCos manage the

mental workload associated with maintaining sit-

uational awareness.

Maintaining Situational Awareness

ATCos work to maintain a valid mental repre-

sentation of the current air traffic situation, which

is commonly referred to as situational awareness

(SA; Endsley, 1995; Endsley & Smolensky,

1998). As Dailey (1984) stated, “The central skill

of the controller seems to be the ability to respond

to a variety of quantitative inputs about several

aircraft simultaneously and to form a continuous-

ly changing mental picture to be used as the basis

for planning and controlling the courses of the

aircraft” (p. 134).

SAis usually understood to involve (a) the con-

tinuous perception of information in the environ-

ment, (b) the integration of this information with

prior knowledge to form a coherent understanding

or “mental picture” of the current situation, and (c)

the use of this mental picture to direct visual search,

guide perception, anticipate the future state of air

traffic, and plan required actions (Endsley, 1995).

SAis maintained through monitoring, which is

the continuous or intermittent comparison of an

anticipated versus an actual traffic situation. Mon-

itoring involves directing attention to external

sources of information (e.g., sector maps, a radar

screen, or flight plans) in order to determine if tra-

jectories of future aircraft movement and positions

are consistent with the mental picture. As long as

the mental picture remains consistent with actual

events, SAis maintained. Research indicates that

many operational errors can be attributed to SA

problems (e.g., Jones & Endsley, 1996) and, con-

versely, that scores on measures of SAcan predict

performance (e.g., Durso, Hackworth, Truitt,

Crutchfield, Nikolic, & Manning, 1998). Under

heavy task demand ATCos can be so busy dealing

with traffic events that they do not have time to

update their mental picture, cannot plan ahead, and

are forced to work reactively. ATCos refer to this

as “losing the picture.” However, as will be dis-

cussed shortly, ATCos have strategies that help

avoid this situation.

To assess ATCo SA, query techniques are

commonly used that tap ATCos’ ability to recall

information about the air traffic situation (Adams,

Tenney, & Pew,1995). Findings suggest that ATCos

can reduce the mental workload associated with
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monitoring by regulating the amount of attention

they give to individual aircraft (Bisseret, 1971;

Gronlund et al., 1998; Sperandio, 1971). Early

studies indicated that ATCos could recall more

about the positions and flight data of aircraft on

which they had performed control actions (Means

et al., 1988) or of aircraft that were in potential

conflict (Bisseret, 1971; Sperandio, 1971), as

compared with aircraft on which they had not

performed control actions or which were not in

potential conflict. More recently, Gronlund et al.

(1998) found that ATCos appeared to classify air-

craft into two categories – important versus non-

important – on the basis of how soon they would

lose separation with other aircraft. Although

there was no difference in ATCos’ability to recall

the two-dimensional position or heading of im-

portant versus nonimportant aircraft, ATCos were

more likely to recall the altitude and ground speed

of important aircraft. Gronlund et al. (1998) con-

cluded that ATCos assigned importance to aircraft

on the basis of relative spatial position to other

aircraft, and that information not presented spa-

tially (e.g., altitude, speed) was selectively attend-

ed on the basis of this importance weighting.

As noted previously, the underlying structure

of the airspace can become the basis for abstrac-

tions that simplify the ATCo’s cognitive work

(Histon & Hansman, 2002; Seamster, Redding,

Cannon, Ryder, & Purcell, 1993). Field observa-

tions conducted by Histon and Hansman (2002)

indicated that standard flows are one of the most

important structure-based abstractions. ATCos

classify aircraft into standard and nonstandard

classes according to their match with standard

flow, which would include the aircraft’s future

routing, ingress and engress points, coordination

requirements, and crossing routes/altitude pro-

files (Histon & Hansman, 2002; Seamster et al.,

1993). These factors allow the ATCo to form a

general expectation of how aircraft will move

through the sector, significantly reducing the

complexity of control. Aircraft classified as non-

standard increase the complexity of control be-

cause their trajectory and interactions with other

aircraft are more difficult to predict a priori.

In addition, structured interviews reveal that

ATCos process aircraft in groups to reduce the

information-processing requirements associated

with monitoring air traffic (Amaldi & Leroux,

1995; Histon & Hansman, 2002; Redding, Ryder,

Seamster, Purcell, & Cannon, 1991). For exam-

ple, if four aircraft are heading southbound and six

aircraft northbound, the ATCo might process and

monitor the four southbound aircraft as one stream

and the six northbound aircraft as another stream,

rather than monitor each individual aircraft.

ATCos report that such strategies let them focus

on the intersection of the two streams, rather than

requiring them to assess the conflict status of each

possible aircraft pair (Pawlak et al., 1996). Aircraft

separation within streams is maintained by speed

control (Sperandio, 1978), and separation between

streams at common intersection points is main-

tained by altitude control. Overall, establishing

streams simplifies the process of maintaining SA,

letting the ATCo work with more aircraft simul-

taneously and use fewer control actions.

Conflict Detection

One aspect of SA that is particularly critical is

conflict detection. Conflict detection research has

tended to focus on (a) factors that increase the

complexity of detecting conflicts or (b) strategies

that ATCos use to minimize this complexity. The

connection with mental workload is seldom ex-

plicitly addressed, although increases in the time

taken to detect conflicts have been associated with

greater mental workload ratings (e.g., Galster,

Duley, Masalonis, & Parasuraman, 2001; Metzger

& Parasuraman, 2001). In an operational context,

a delay in conflict detection imposes constraints

on the ATCo because it decreases the time avail-

able to intervene and ensure separation. Areduced

time to implement a conflict resolution plan can

force an ATCo into a situation in which he or she

has to create a disorderly flow of traffic, which has

the potential to cause problems in the future (Cox,

1994; Kallus, Van Damme, & Dittman, 1999). In

contextual control terms (e.g., Hollnagel, 2002),

this could represent one aspect of the shift from

tactical to a reactive control.

Several studies have examined how task

demand affects the accuracy and timeliness of

conflict detection (Boag et al., 2006; Galster et al.,

2001; Leplat & Bisseret, 1966; Metzger & Para-

suraman, 2001; Nunes & Scholl, 2004; Rantanen

& Nunes, 2005; Remington, Johnston, Ruthruff,

Gold, & Romera, 2000). For example, Remington

et al. (2000) found that conflict detection accura-

cy decreased, and conflict detection latency in-

creased, with higher traffic count and increasing

angles of convergence. Conflict detection latency

also increased as time to conflict increased. Higher
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traffic count presumably affects conflict detection

by increasing visual search requirements and re-

ducing the time available to make conflict status

decisions (Hendy et al. 1997). Boag et al. (2006)

showed that the number of aircraft transitions in

and out of conflict positively predicted detection

time. Similarly, Leplat and Bisseret (1966) found

that ATCos took longer to detect conflicts when

three variables needed to be processed to deter-

mine conflict status (e.g., altitude, heading, and

speed) than when only one variable needed to be

processed.

Nevertheless, ATCos may change their strate-

gy for conflict detection in response to these task

demands and anticipated mental workload. For ex-

ample, ATCos appear to prefer using altitude infor-

mation to heading and speed information when

determining the likelihood of aircraft conflict

(Amaldi & Leroux, 1995; Leplat & Bisseret, 1966;

Willems, Allen, & Stein, 1999). This finding is

supported by cognitive task analyses (Kallus, Van

Damme, & Dittman, 1999; Neal et al., 1998;

Seamster et al., 1993), interviews with controllers

(Amaldi & Leroux, 1995; Boudes, Amaldi, &

Cellier,1997), anecdotal reports (Roske-Hofstrand

& Murphy, 1998; Wickens, Mavor, & McGee,

1997), and experiments (Bisseret, 1971; Gronlund

et al., 1998; Rantanen & Nunes, 2005). Taken

together, this body of research suggests that ATCos

save attentional resources by extrapolating aircraft

trajectories for lateral separation only in circum-

stances where vertical separation is questionable.

Furthermore, ATCos prefer to use altitude and

heading information over speed information (Bis-

seret, 1971; Leplat & Bisseret, 1966; Rantanen

& Nunes, 2005; Willems et al., 1999). Presumably,

this is attributable to the greater cognitive effort

associated with processing speed information

(see Law et al., 1993).

Afurther strategy that ATCos use to detect con-

flicts, already touched upon, is to exploit airspace

structure and standard flows (Amaldi & Leroux,

1995; Histon & Hansman, 2002; Kallus, Van

Damme,&Dittman,1999; Neal et al.,1998; Roske-

Hofstrand & Murphy, 1998; Seamster et al., 1993).

Specific aircraft events occur routinely at specific

locations in a sector, and ATCos learn to recognize

specific air traffic configurations. Memory for past

experiences lets ATCos anticipate where conflicts

may occur (sector “hot spots” or “critical points”),

simplifying the cognitive work of detecting con-

flicts. By focusing on a finite number of critical

crossing points, ATCos do not need to evaluate

the likelihood of conflict between all aircraft pairs

in the sector, thus reducing task demands and,

presumably, mental workload.

Conflict Resolution

The ATC literature has provided some useful

insights into the strategies that ATCos use to

resolve conflicts under different levels of task

demand and thus regulate their mental workload.

On the basis of detailed interviews with ATCos,

several research groups have argued that the

workload associated with resolving conflicts de-

pends largely on sector-specific knowledge that

ATCos acquire over time (Kallus, Van Damme,

& Dittman, 1999; Neal et al., 1998; Seamster et

al., 1993). ATCos often report that they have the

equivalent of a “conflict resolution library” of

solutions to particular configurations of air traffic

(Kallus, Van Damme, & Dittman, 1999). When a

conflict is detected, ATCos “access” their library

to find a previous solution and then adapt and

apply that previous solution to the new case. If no

appropriate solution is found, ATCos must either

review their solution library for a suitable plan or

use problem-solving techniques to develop a new

solution. Retrieving a solution from memory re-

duces cognitive work and the associated workload.

ATCos also regulate mental workload by being

selective about when they intervene to ensure

separation. ATCos interviewed by Kallus, Van

Damme, and Dittman (1999) reported that under

low workload they tend not to solve conflicts im-

mediately because it can reduce the efficiency of

aircraft movement. They prefer to monitor the sit-

uation. Under high-workload conditions, howev-

er, they are reluctant to let potential conflicts run

unless intervening tasks leave them with enough

capacity to monitor the potential conflict. Under

high workload they tend to solve problems by tak-

ing immediate action in order to conserve atten-

tional resources. This strategy also reduces the

likelihood that they will forget to return to the un-

resolved situation because of distraction from

competing tasks (Loft, Humphreys, & Neal, 2003).

Interviews with ATCos conducted by Amaldi

and Leroux (1995; also see Weitzman, 1993) indi-

cate that a further factor determining when ATCos

intervene is their judgment of the probability that

the aircraft pair will violate separation. If they re-

spond to every possible conflict they are proactive

but overloaded, whereas if they respond only to



PREDICTING MENTAL WORKLOAD 393

definite conflicts they are reactive and may lose

the picture. Under high mental workload condi-

tions ATCos shift their criterion for classifying

conflicts, becoming more conservative so that

they intervene to ensure separation if there is any

uncertainty regarding future separation between

aircraft. Although such a change in conflict detec-

tion criterion may temporarily increase ATCo

control activity, it will significantly reduce the

amount of control activity required in the longer

term. Moreover, when intervening to ensure sep-

aration under conditions of high workload, ATCos

choose solutions that require minimum monitor-

ing and coordination. In this way, ATCos maintain

resilient control. For example, Kirwan and Flynn

(2002) identified various heuristics ATCos use to

resolve conflicts, such as (a) using as few control

actions as possible, (b) giving aircraft initial level

changes early and fine-tuning later, (c) using so-

lutions that require less coordination, (d) using

vertical separation for complex conflicts, and (e)

keeping solutions simple and safe.

Summary and Assessment

The key characteristic of the ATCo mental

workload model presented in Figure 3 is that the

ATCos do not passively react to events but, in-

stead, actively control workload by selecting stra-

tegies that have different demands on cognitive

resources. Operator capacity is therefore not a sta-

tic property of the ATCo but a dynamic one. In this

section we reviewed efforts to identify the con-

trol tasks that ATCos perform and the strategies

ATCos use to minimize the control activity asso-

ciated with these control tasks, in order to under-

stand workload.

Human performance models have been dev-

eloped that integrate ATCo control tasks into

computational frameworks, but such models gen-

erally do not include sophisticated sets of strate-

gies, model mental workload, or demonstrate how

mental workload might drive the selection of

strategies. Research on time pressure suggests that

one way workload might be modeled is as a func-

tion of the ratio of the time to perform a task to

the time available before the task must be com-

pleted. Task timing information for specific con-

trol tasks could be estimated via empirical data

(e.g., Cardosi, 1993), interviews (e.g., Amaldi &

Leroux,1995), cognitive task analyses (e.g., Kallus,

Van Damme, & Dittman, 1999) or observation

(e.g., Histon & Hansman, 2002). If mappings be-

tween workload – however it is measured – and

selection of strategies could be operationalized

within human performance models, a better under-

standing could probably be gained of the adaptive

nature of ATCo work and of workload itself.

Research on three principal ATCo activities –

maintaining SA, detecting conflicts, and resolving

conflicts – provides abundant evidence that ATCos

seek ways of minimizing mental workload. The

workload of maintaining SA can be reduced by

using standard flows and by grouping aircraft so

that many aircraft can be handled in one operation.

Moreover, by focusing on altitude information and

seeking resolution on that basis before considering

heading and speed, ATCos seek to reduce work-

load. The workload associated with the subtask of

conflict detection is also amenable to strategic con-

trol. For example, sector structure produces loca-

tions where conflicts are more likely or less likely.

The workload of resolving conflicts can be reduced

through development and use of a repertoire of

solutions mapped to the imminence, probability,

and geometry of potential conflicts, as well as the

timing of interventions. Overall, ATCos attend to

cues that give them the smallest amount of infor-

mation necessary for effective decision making

according to the priorities chosen for perfor-

mance.

All the these factors can in principle be mod-

eled computationally, leading to a better under-

standing of the relation among task demands,

ATCo activity, and ATCo mental workload, but

operationalization can be difficult. In the next sec-

tion we review models that reflect such modeling.

MODELS INTEGRATING TASK DEMANDS
WITH OPERATOR ACTIVITY

This review has focused on two broad deter-

minants of mental workload: task demands (the

amount and complexity of work) and operator

capacity (the resources the ATCo can marshal to

meet demand, including strategies). There have

been some relatively recent efforts by researchers

to develop techniques that integrate task demand

with operator capacity in order to predict workload

(Averty, Athènes, Collet, & Dittmar, 2002; Averty

et al., 2004; Chaboud, Hunter, Hustache, Mahlich,

& Tullett, 2000; Cullen, 1999; Stamp, 1992).

For example, Chaboud et al. (2000) developed

a model that describes the mental workload cor-

responding to different control tasks. First, the
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model describes workload for routine tasks, such

as flight data management, coordination, and radio

communications. The workload value is based on

the number of aircraft sector entries and is mul-

tiplied by the estimated time it would take ATCos

to complete the task (task duration). Second, a

value is assigned for the workload associated with

climbing and descending aircraft, defined as the

number of aircraft with a 6,000-foot vertical evo-

lution multiplied by task duration. Third, a value

is assigned based on the workload associated

with monitoring conflicts, defined as the number

of conflicts multiplied by task duration. This work-

load metric correlated well with ATCo activity

measures but was not validated with an indepen-

dent workload measure. Two significant limita-

tions of the work of Chaboud et al. (2000) are that

(a) the workload weights assigned to different con-

trol tasks were fixed and (b) the durations assigned

to tasks were fixed. These methods do not take

into account the fact that the workload associated

with different control tasks can be modulated by

the use of strategy.

Averty et al. (2002, 2004) developed a metric

called the traffic load index (TLI), which takes into

account the fact that, through their actions, ATCos

will regulate their own mental workload. The TLI

is calculated by assigning each aircraft under

jurisdiction a weight that contributes toward the

TLI for the sector. Aircraft under jurisdiction of

the ATCo are assigned a base weight of 1. Any air-

craft that need additional monitoring – for exam-

ple, because they are anticipated to be involved in

a conflict or will need vectoring on their descent

profile into an airport – accrue additional weight-

ing. The weighting is thus a measure of the amount

of monitoring each aircraft requires. This first

part of the TLI provides a simple measure of task

demand. The second part of the TLI assesses the

effects of ATCo activity. If the ATCo sees a poten-

tial conflict but waits a long time before resolving

it, then the so-called maturing time (MT) before

acting is protracted and workload associated with

monitoring is increased. In contrast, if the ATCo

resolves the potential conflict immediately, MT is

short and monitoring workload is removed. Even

if action is taken immediately, in some cases sep-

aration may not be ensured for quite a long time,

leading to a long MT because of the remaining

uncertainty. Acting earlier removes time pressure

to act but leaves some uncertainty as to whether

a conflict will be resolved as desired. In contrast,

acting later imposes time pressure when one does

come to act, but it provides greater certainty as to

whether the conflict will be resolved as desired.

Averty et al. (2002, 2004) have shown that the

correlation between the NASA Task Load Index

(NASA-TLX; Hart & Staveland, 1988) and TLI

was significantly higher than that between the

traffic count and NASA-TLX. This indicates that

TLI is a better predictor of ratings of mental work-

load than is traffic count. In addition, the TLI had

higher correlations with all physiological work-

load measures than did both traffic count and the

NASA-TLX. By modeling the timing of ATCos’

interventions, the TLI measure goes some way in

capturing the effect of different ATCo strategies

on workload.

In a further effort, Cullen (1999) built a mental

workload model in which she attempted to quan-

tify the sequences and durations of ATCo tasks.

Factors influencing the sequence and durations of

tasks included (a) environmental conditions that

initiated each task, (b) priorities assigned to tasks

(urgent, high, low), (c) rules specifying which

tasks could be interrupted by tasks of higher pri-

ority, and (d) rules governing task selection and

sequence. The task model soundly predicted task

durations. However, the model’s ability to predict

task sequence and workload was poor. In gener-

al, observed workload was higher than predicted

workload. Cullen (1999) concluded that work-

load was poorly predicted because the task model

could not accurately predict sequences of ATCo

activity. Acloser inspection of the model indicates

that it did not take into account the effects of

workload management strategies on the sequences

and durations of task behavior. In addition, the

model did not account for the fact that multiple

tasks are often completed concurrently or that

ATCos often monitor the progress of aircraft after

issuing instructions to ensure pilot compliance

and adequate separation. Overall, the predictive

validity of Cullen’s (1999) model was disappoint-

ing. Notably, the factors missing from the model

included factors modeled in Figures 2 and 3 and

discussed in preceding sections of this review.

A further and very important model that inte-

grates task demands with operator activity is the

Man-Machine Interaction Design and Analysis

System (MIDAS; Corker & Smith, 1993). MIDAS

is not a mental workload model per se but a hu-

man performance model used for the analysis of

human-machine systems design issues. MIDAS
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is a first-principles model of human performance,

built upon 35 primitive operator tasks such as vi-

sual monitoring, typing, grasping, and comput-

ing. Each of these tasks is assigned a workload

weight on each of the six channels from multiple

resource theory (Wickens, 1984): visual and audi-

tory input, spatial and verbal cognitive process-

ing, and manual and voice output. Additionally,

MIDAS has a dynamic mechanism for switching

between control strategies that is based on Holl-

nagel’s (2002) COCOM model. The model switch-

es among strategic, tactical, opportunistic, and

scrambled control depending on four control para-

meters: the event horizon (a measure of success of

previous control actions taken by the operator), an

estimate of the time available for the control activ-

ity, an estimate of the time required to complete

the control activity, and an estimate of competen-

cy (measured in the number of goals). The specif-

ic values of these control variables that will make

MIDAS switch between different control strategies

are domain dependent. For the ATCo model in Air

MIDAS, the aviation-specific version of MIDAS,

the event horizon is measured in number of aircraft

under control and the complexity of maneuvers

the aircraft have to perform (Corker, 2003). Eval-

uations of Air MIDAS have been performed, but

detailed reports are still forthcoming.

SUMMARY AND CONCLUSION

The most prevalent approach to studying the

mental workload of ATCos is to investigate traffic

factors that produce or influence task demand, on

the assumption that there is a relationship between

task demand and mental workload that is mediat-

ed by control strategy (see Figure 1). In this paper

we reviewed this and other modeling architectures

that have been used to understand workload in

ATC. Influenced by Sperandio’s (1971) emphasis

on the central role of alternative work methods,

or strategies, in controlling workload (Figure 2),

we developed a model expanding on the ATCo’s

role in selecting an appropriate strategy for meet-

ing task demands (Figure 3). The model shows

strategy being driven on a proactive/feedforward

basis as well as on a reactive/feedback basis. The

model also shows strategy being driven not only

by task demands but also by judgments about

work priorities  that is, by a hierarchy of standards

that ATCos aim to preserve.

In the body of this review, we organized the

vast literature on ATCo performance around two

major themes: research investigating the relation-

ship between task demands and mental workload,

and research investigating the relationship be-

tween ATCo capacity and mental workload. Much

of the latter work emphasizes the crucial role of

ATCo strategies in handling task demand. Toward

the end of the review we examined models in

which researchers have attempted to integrate

these two themes. The overall impression is that

there is still a long way to go before ATCo work-

load is fully understood, let alone modeled com-

putationally to a level that would support robust

organizational decision making about allocation

of ATCo work through sector sizes, rostering, 

and so on.

Much research still seeks relationships between

task demands and ATCo mental workload in the

open-loop manner illustrated in Figure 1. Howev-

er, simply “integrating” task demand and opera-

tor capacity in closed-loop models is unlikely to

help in modeling workload. Information is also

needed about strategies, performance priorities,

and an appropriate architecture to link all these

elements. Figure 3 represents an attempt to do so.

This approach may be more useful in understand-

ing ATCo workload than attempting to model the

relationship between isolated traffic factors and

ATCo speed or accuracy of responding. However,

an even more appropriate architecture may be one

that models – far more explicitly even than that in

Figure 3 – the fact that ATCos regulate their work-

load by selecting control strategies that meet task

demands, driven by the relative priority of their

objectives. Figure 4 shows the simplest form of

such a workload regulation model. In Figure 4, a

deviation from the desired level of workload leads

to an adjustment of control strategy, and the con-

trol strategy shapes the task demands that produce

actual workload. Actual workload is compared

with the desired level of workload, and the loop

repeats.

One strength of the mental workload models

presented in Figures 3 and 4 is that they use 

relatively domain-independent system-level para-

meters (e.g., task demand, metacognition, prior-

itization, strategy). Consequently, as outlined in

the introduction to this paper, operational models

of workload could be developed for a variety of

complex work systems (e.g., piloting, unmanned

aerial vehicle control, anesthesiology, railway

signaling, and automobile driving) using the con-

ceptual models presented in Figures 3 and 4.
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Moreover, it suggests quite a different way of

investigating workload in complex work systems.

First, instead of investigating the linear relation-

ship between task demand and workload at spe-

cific moments in time, one might investigate

dynamic properties of workload that could show

workload to lead or lag events (Rouse et al., 1993).

Second, one might investigate workload signals,

rather than task demand signals, that lead to a

switch in strategy. Third, one might investigate

how operators learn signals relevant for manag-

ing workload and developing essential skills (e.g.,

estimating time needed to execute plans, estimat-

ing when events will occur), and examine the

relationship between the two. Fourth, one might

investigate far more thoroughly than before how

strategies create specific patterns of task demands.

Fifth, one might study the impact of operators’

persistence with inappropriate strategies on both

workload and control quality and how any such

problems might be alleviated. This list is not

exhaustive – there are many further possible im-

plications of taking such an approach to concep-

tualizing both ATCo workload and workload in

other complex work systems.

Finally, taking a mental workload-centered

view rather than a task demand-centered view

may have longer term benefits. Globally, this is an

era of rapid changes in air traffic management

(EUROCONTROL, 1999; Federal Aviation Ad-

ministration, 2005). For example, “free flight”

refers to a wide variety of ATC regimens that all

share the following characteristics: an increase in

airspace capacity through new decision support

tools, increased automation to aid the ATCo, and

increased flexibility for airline and aircraft oper-

ations. Similarly, in modern aircraft, pilots are

provided with host of automated flight control sys-

tems that automate tasks such as status monitoring

and flight mode (e.g., climb, cruise descend;

Kantowitz, 1994; Wickens, 2002). Aviation pro-

viders and regulatory bodies need tools that are

capable of assessing the workload experienced by

operators under these proposed systems. Models

that focus primarily on the link between task de-

mand and workload are likely to have difficulty

generalizing to new automation systems because

operator control strategies will change. More fully

developed models that show how control strate-

gies regulate task demand and thereby workload

would be extremely useful because they would let

researchers explore the consequences of new con-

trol arrangements. Good progress has been made

in describing the empirical relationship between

task demand and workload in many complex work

systems. The next step is to develop and test dy-

namic models that explain the relationship among

workload, task demands, and strategy-driven ac-

tivity within current and future systems.
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