
 Lecture 6 

(Additional information on t-tests and hypothesis testing) 

Lecture 5 focused on perhaps the most common of the t-tests, the two sample assuming 
equal variance.  There are other versions as well; Excel lists two others, the two sample assuming 
unequal variance and the paired t-test.  We will end with some comments about rejecting the null 
hypothesis. 

Choosing between the t-test options 

As the names imply each of the three forms of the t-test deal with different types of data 
sets.  The simplest distinction is between the equal and unequal variance tests.  Both require that 
the data be at least interval in nature, come from a normally distributed population, and be 
independent of each other – that is, collected from different subjects. 

The F-test for variance. 

To determine if the population variances of two groups are statistically equal – in order to 
correctly choose the equal variance version of the t-test – we use the F statistic, which is 
calculated by dividing one variance by the other variance.  If the outcome is less than 1.0, the 
rejection region is in the left tail; if the value is greater than 1.0, the rejection region is in the 
right tail.  In either case, Excel provides the information we need. 

To perform a hypothesis test for variance equality we use Excel’s F-Test Two-Sample for 
Variances found in the Data Analysis section under the Data tab.  The test set-up is very similar 
to that of the t-test, entering data ranges, checking Labels box if they are included in the data 
ranges, and identifying the start of the output range.  The only unique element in this test is the 
identification of our alpha level. 

Since we are testing for equality of variances, we have a two sample test and the rejection 
region is again in both tails.  This means that our rejection region in each tail is 0.25.  The F-test 
identifies the p-value for the tail the result is in, but does not give us a one and two tail value, 
only the one tail value.  So, compare the calculated p-value against .025 to make the rejection 
decision.  If the p-value is greater than this, we fail to reject the null; if smaller, we reject the null 
of equal variances.   

Excel Example. To test for equality between the male and female salaries in the 
population, we set up the following hypothesis test. 

Research question: Are the male and female population variances for salary equal? 

Step 1: Ho: Male salary variance = Female salary variance 

 Ha: Male salary variance ≠ Female salary variance 

Step 2: Reject Ho if p-value is less than Alpha = 0.025 for one tail. 

Step 3: Selected test is the F-test for variance 



Step 4: Conduct the test 

 

 

Step 5: Conclusion and interpretation.  The test resulted in an F-value less than 1.0, so the 
statistic is in the left tail.  Had we put Females as the first variable we would have gotten a right 
tail F-value greater than 1.0.  This has no bearing on the decision.  The F value is larger than the 
critical F (which is the value for a 1-tail probability of 0.25 – as that was entered for the alpha 
value). 

So, since our p-value (.44 rounded) is > .025 and/or our F (0.94 rounded) is greater than 
our F Critical, we fail to reject the null hypothesis of no differences in variance.  The correct t-
test would be the two-sample T-test assuming equal variances. 

Other T-tests. 

We mentioned that Excel has three versions of the t-test.  The equal and unequal variance 
versions are set up in the same way and produce very similar output tables.  The only difference 



is that the equal variance version provides an estimate of the common variation called pooled 
variance while this row is missing in the unequal variance version. 

A third form of the t-test is the T-Test: Paired Two Sample for Means.  A key 
requirement for the other versions of the t-test is that the data are independent – that means the 
data are collected on different groups.  In the paired t-test, we generally collect two measures on 
each subject.  An example of paired data would be a pre- and post-test given to students in a 
statistics class. Another example, using our class case study would the comparing the salary and 
midpoint for each employee – both are measured in dollars and taken from each person. An 
example of NON-pared data, would the grades of males and females at the end of a statistics 
class.  The paired t-test is set up in the same way as the other two versions.  It provides the 
correlation (a measure of how closely one variable changes when another does – to be covered 
later in the class) coefficient as part of its output. 

An Excel Trick.  You may have noticed that all of the Excel t-tests are for two samples, 
yet at times we might want to perform a one-sample test, for example quality control might want 
to test a sample against a quality standard to see if things have changed or not.  Excel does not 
expressly allow this.  BUT, we can do a one-sample test using Excel. 

The reason is a bit technical, but boils down to the fact that the two-sample unequal 
variance formula will reduce to the one-sample formula when one of the variables has a variance 
equal to 0.  So using the unequal variance t-test, we enter the variable we are interested – such as 
salary – as variable one and the hypothesized value we are testing against – such as 45 for our 
case – as variable two, ensuring that we have the same number of variables in each column. 

Here is an example of this outcome. 

Research question: Is the female population salary mean = 45? 

Step 1: Ho: Female salary mean = 45 

 Ha: Female salary mean ≠ 45 

Step 2: Reject the null hypothesis is less than Alpha = 0.05 

Step 3: Selected test is the two sample unequal variance t-test  

Step 4: Conduct the test 



 

Step 5: Conclusions and Interpretation.  Since the two tail p-value is greater than (>) .025 
and/or the absolute value of the t-statistic is less than the critical two tail t value, we fail to reject 
the null hypothesis.  Our research question answer is that, based upon this sample, the overall 
female salary average could equal 45. 

Miscellaneous Issues on Hypothesis Testing 

Errors.  Statistical tests are based on probabilities, there is a possibility that we could 
make the wrong decision in either rejecting or failing to reject the null hypothesis.  Rejecting the 
null hypothesis when it is true is called a Type I error.  Accepting (failing to reject) the null when 
it is false is called a Type II error. 



Both errors are minimized somewhat by increasing the sample size we work with.  A type 
I error is generally considered the more severe of the two (imagine saying a new medicine works 
when it does not), and is managed by the selection of our alpha value – the smaller the alpha, the 
harder it is to reject the null hypothesis (or, put another way, the more evidence is needed to 
convince us to reject the null).  Managing the Type II error probability is slightly more 
complicated and is dealt with in more advanced statistics class.  Choosing an alpha of .05 for 
most test situations has been found to provide a good balance between these two errors. 

Reason for Rejection.  While we are not spending time on the formulas behind our 
statistical outcomes, there is one general issue with virtually all statistical tests.  A larger sample 
size makes it easier to reject the null hypothesis.  What is a non-statistically significant outcome 
based upon a sample size of 25, could very easily be found significant with a sample size of, for 
example, 25,000.   This is one reason to be cautious of very large sample studies – far from 
meaning the results are better, it could mean the rejection of the null was due to the sample size 
and not the variables that were being tested. 

The effect size measure helps us investigate the cause of rejecting the null.  The name is 
somewhat misleading to those just learning about it; it does NOT mean the size of the difference 
being tested.  The significance of that difference is tested with our statistical test.  What it does 
measure is the effect the variables had on the rejection (that is, is the outcome practically 
significant and one we should make decisions using) versus the impact of the sample size on the 
rejection (meaning the result is not particularly meaningful in the real world). 

For the two-sample t-test, either equal or unequal variance, the effect size is measured by 
Cohen’s D.  Unfortunately, Excel does not yet provide this calculation automatically, however it 
is fairly easy to generate.   

Cohen’s D = (absolute value of the difference between the means)/the standard deviation of both 
samples combined. 

Note: the total standard deviation is not given in the t-test outputs, and is not the same as the 
square root of the pooled variance estimate.  To get this value, use the fx function stdev.s on the 
entire data set – both samples at the same time. 

Interpreting the effect size outcome is fairly simple.  Effect sizes are generally between 0 
and 1. A large effect (a value around .8 or larger) means the variables and their interactions 
caused the rejection of the null, and the result has a lot of practical significance for decision 
making.  A small effect (a value around .2 or less) means the sample size was more responsible 
for the rejection decision than the variable outcomes.  The medium effect (values around .5) are 
harder to interpret and would suggest additional study (Tanner & Youssef-Morgan, 2013). 
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