STUDYDADDY

Get Homework Help From Expert Tutor

Get Hel.p

Get Homework Help From Expert Tutor

Get Help

*P10.050 GO Multipart

*Part 1

Correct
You will analyze four different beams. For each beam and loading, determine the beam deflection at point H.
Assume that $E I=1.0 \times 10^{7} \mathrm{kip}-\mathrm{in} .^{2}$ is constant for each beam. Remember that a positive deflection is up and a positive rotation is counterclockwise.

Here is Beam 1.
Assume $L_{A B}=7 \mathrm{ft}, L_{B H}=8 \mathrm{ft}, M_{B}=45 \mathrm{kip}-\mathrm{ft}$.

For Beam 1, determine the deflection and rotation angle at point B.

Answers: $v_{B 1}=-\overline{0.191}$ in., $\theta_{B 1}=-0.004536$ rad.

Answer * 1: the tolerance is +/-2\%
Answer *2: the tolerance is $+/-2 \%$
Attempts: Unlimited

*Part 2

Correct
For Beam 1, determine the deflection at point H.

Answer: $v_{H 1}=0.627 \mathrm{in}$.

*Part 3

CorrectHere is Beam 2
Assume $L_{A B}=14 \mathrm{ft}, L_{B C}=8 \mathrm{ft}, L_{C H}=4 \mathrm{ft}, P=15$ kips.

For Beam 2, determine the rotation angle at point C.

Answer: $\theta_{C 2}=0.00659$ rad.
the tolerance is $+/-2 \%$

Attempts: Unlimited

*Part 4

Correct

For Beam 2, determine the deflection at point H.
Answer: $v_{H 2}=0.316 \mathrm{in}$.
the tolerance is $+/-2 \%$
Attempts: Unlimited

*Part 5

Correct

Here is Beam 3.
Assume $L_{A H}=4 \mathrm{ft}, L_{H B}=8 \mathrm{ft}, w=2.5 \mathrm{kips} / \mathrm{ft}$.

For Beam 3, determine the deflection at point H.

Answer: $v_{H 3}=-0.6266 \mathrm{in}$.
the tolerance is $+/-2 \%$
Attempts: Unlimited

*Part 6

\checkmark Correct
Here is Beam 4.
Assume $L_{H A}=6 \mathrm{ft}, L_{A B}=18 \mathrm{ft}, w=3.0 \mathrm{kips} / \mathrm{ft}$.

For Beam 4, determine the cantilever deflection of the beam at point H due to the uniformly distributed load $3.0 \mathrm{kips} / \mathrm{ft}$ between point A and point H. This is the deflection that would be calculated at point H assuming a fixed support at A.

Answer: $v_{H 4 a}=-\overline{0.084} \mathrm{in}$.

*Part 7

Correct

For Beam 4, determine the magnitude (report a positive number) of the bending moment at point A due to the uniformly distributed load $3.0 \mathrm{kips} / \mathrm{ft}$ between point H and point A.

Answer: $M_{A}=54$ kip-ft.
the tolerance is +/-2\%
Attempts: Unlimited

*Part 8

Correct
For Beam 4, determine the rotation angle at point A due to the moment produced at A by the uniformly distributed load 3.0 kips/ft between point H and point A.

Answer: $\theta_{A 4}=0.00466 \mathrm{rad}$.
the tolerance is $+/-2 \%$
Attempts: Unlimited

*Part 9

Incorrect
The component of the deflection at H due to the rotation angle at point A equals the rotation angle times the distance from point A to point H. Be careful with units and the sign convention. A downward deflection is negative, and an upward deflection is positive.
For Beam 4, determine the component of the deflection at point H due to the rotation angle at A.

Answer: $v_{H 4 b}=\boxed{0} \mathrm{in}$.
the tolerance is $+/-2 \%$
Attempts: Unlimited

*Part 10

Correct
For Beam 4, determine the total deflection at point H.

Answer: $v_{H 4}=0.419 \mathrm{in}$.
the tolerance is $+/-2 \%$
Attempts: Unlimited

Get Homework Help From Expert Tutor

Get Help

STUDYDADDY

Get Homework Help From Expert Tutor

Get Hel.p

