

Get Homework Help From Expert Tutor

Print by: SALEH HUSSAIN ENGR 213-001 Sp17 / HW CH 10

*P10.050 GO Multipart

*Part 1

You will analyze four different beams. For each beam and loading, determine the beam deflection at point H. Assume that $EI = 1.0 \times 10^7$ kip-in.² is constant for each beam. Remember that a positive deflection is up and a positive rotation is counterclockwise.

Here is Beam 1.

Assume L_{AB} =7 ft, L_{BH} =8 ft, M_B =45 kip-ft.

For Beam 1, determine the deflection and rotation angle at point B.

Answers: $v_{B1} = [-0.191]_{\text{in.}}$, $\theta_{B1} = [-0.004536]_{\text{rad.}}$

Answer *1: the tolerance is +/-2% **Answer *2:** the tolerance is +/-2%

Attempts: Unlimited

*Part 2

✓ Correct

For Beam 1, determine the deflection at point H.

Answer: $v_{H1} = [-0.627]$ in.

the tolerance is +/-2%

Attempts: Unlimited

*Part 3

✓ Correct

Here is Beam 2

Assume L_{AB} =14 ft, L_{BC} =8 ft, L_{CH} =4 ft, P=15 kips.

For Beam 2, determine the rotation angle at point C.

Answer: $\theta_{C2} = 0.00659$ rad.

the tolerance is +/-2%

Attempts: Unlimited

*Part 4

✓ Correct

For Beam 2, determine the deflection at point H.

Answer: $v_{H2} = 0.316$ in.

the tolerance is +/-2%

Attempts: Unlimited

*Part 5

Correct

Here is Beam 3.

Assume L_{AH} =4 ft, L_{HB} =8 ft, w=2.5 kips/ft.

For Beam 3, determine the deflection at point *H*.

Answer: $v_{H3} = [-0.6266]$ in.

the tolerance is +/-2%

Attempts: Unlimited

*Part 6

✓ Correct

Here is Beam 4.

Assume L_{HA} =6 ft, L_{AB} =18 ft, w=3.0 kips/ft.

For Beam 4, determine the cantilever deflection of the beam at point H due to the uniformly distributed load 3.0 kips/ft between point A and point H. This is the deflection that would be calculated at point H assuming a fixed support at A.

Answer: $v_{H4a} = [-0.084]$ in.

the tolerance is +/-2%

Attempts: Unlimited

*Part 7

For Beam 4, determine the magnitude (report a positive number) of the bending moment at point A due to the uniformly distributed load 3.0 kips/ft between point H and point A.

Answer: $M_A = \sqrt{54}$ kip-ft.

the tolerance is +/-2%

Attempts: Unlimited

*Part 8

For Beam 4, determine the rotation angle at point A due to the moment produced at A by the uniformly distributed load 3.0 kips/ft between point H and point A.

Answer: $\theta_{A4} = 0.00466$ rad.

the tolerance is +/-2%

Attempts: Unlimited

*Part 9

The component of the deflection at H due to the rotation angle at point A equals the rotation angle times the distance from point A to point H. Be careful with units and the sign convention. A downward deflection is negative, and an upward deflection is positive.

For Beam 4, determine the component of the deflection at point H due to the rotation angle at A.

Answer: $v_{H4b} = 0$ in

the tolerance is +/-2%

Attempts: Unlimited

*Part 10

✓ Correct

For Beam 4, determine the total deflection at point H.

Answer: $v_{H4} = [-0.419]$ in.

the tolerance is +/-2%

Attempts: Unlimited

Copyright © 2000-2017 by John Wiley & Sons, Inc. or related companies. All rights reserved.

Get Homework Help From Expert Tutor