

STUDYDADDY

**Get Homework Help
From Expert Tutor**

Get Help

STUDYDADDY

**Get Homework Help
From Expert Tutor**

Get Help

Print by: SALEH HUSSAIN
ENGR 213-001 Sp17 / HW CH 10

*P10.050 GO Multipart

*Part 1

Correct
 You will analyze four different beams. For each beam and loading, determine the beam deflection at point H . Assume that $EI = 1.0 \times 10^7$ kip-in.² is constant for each beam. Remember that a positive deflection is up and a positive rotation is counterclockwise.

Here is Beam 1.

Assume $L_{AB}=7$ ft, $L_{BH}=8$ ft, $M_B=45$ kip-ft.

For Beam 1, determine the deflection and rotation angle at point B .

Answers: $v_{B1} = -0.191$ in., $\theta_{B1} = -0.004536$ rad.

Answer *1: the tolerance is +/-2%

Answer *2: the tolerance is +/-2%

Attempts: Unlimited

*Part 2

For Beam 1, determine the deflection at point H .

Answer: $v_{H1} = -0.627$ in.

the tolerance is +/-2%

Attempts: Unlimited

*Part 3

Correct

Here is Beam 2

Assume $L_{AB}=14$ ft, $L_{BC}=8$ ft, $L_{CH}=4$ ft, $P=15$ kips.

For Beam 2, determine the rotation angle at point C.

Answer: $\theta_{C2} =$ rad.

the tolerance is +/-2%

Attempts: Unlimited

*Part 4

Correct

For Beam 2, determine the deflection at point H.

Answer: $v_{H2} =$ in.

the tolerance is +/-2%

Attempts: Unlimited

*Part 5

Correct

Here is Beam 3.

Assume $L_{AH}=4$ ft, $L_{HB}=8$ ft, $w=2.5$ kips/ft.

For Beam 3, determine the deflection at point H.

Answer: $v_{H3} = -0.6266$ in.

the tolerance is +/-2%

Attempts: Unlimited

*Part 6

Correct

Here is Beam 4.

Assume $L_{HA}=6$ ft, $L_{AB}=18$ ft, $w=3.0$ kips/ft.

For Beam 4, determine the cantilever deflection of the beam at point H due to the uniformly distributed load 3.0 kips/ft between point A and point H. This is the deflection that would be calculated at point H assuming a fixed support at A.

Answer: $v_{H4a} = -0.084$ in.

the tolerance is +/-2%

Attempts: Unlimited

*Part 7

Correct

For Beam 4, determine the magnitude (report a positive number) of the bending moment at point A due to the uniformly distributed load 3.0 kips/ft between point H and point A.

Answer: $M_A =$ 54 kip-ft.

the tolerance is +/-2%

Attempts: Unlimited

*Part 8

Correct

For Beam 4, determine the rotation angle at point A due to the moment produced at A by the uniformly distributed load 3.0 kips/ft between point H and point A.

Answer: $\theta_{A4} =$ 0.00466 rad.

the tolerance is +/-2%

Attempts: Unlimited

*Part 9

Incorrect

The component of the deflection at H due to the rotation angle at point A equals the rotation angle times the distance from point A to point H. Be careful with units and the sign convention. A downward deflection is negative, and an upward deflection is positive.

For Beam 4, determine the component of the deflection at point H due to the rotation angle at A.

Answer: $v_{H4b} =$ 0 *1 in.

the tolerance is +/-2%

Attempts: Unlimited

*Part 10

Correct

For Beam 4, determine the total deflection at point *H*.

Answer: $v_{H4} = -0.419$ in.

the tolerance is +/-2%

Attempts: Unlimited

Copyright © 2000-2017 by John Wiley & Sons, Inc. or related companies. All rights reserved.

STUDYDADDY

**Get Homework Help
From Expert Tutor**

Get Help

STUDYDADDY

**Get Homework Help
From Expert Tutor**

Get Help