

EEGR 215 Materials & Devices

Lab 2

Instructor: Dr Juan White Due

Date: July 12, 2017

With the help of a computer and a commercial software package such as Matlab to solve the following problems:

1. Write a Matlab program to confirm that the n_i versus T curve for Ge and Si graphed in Figure 2.20 can be generated by employing the empirical fit relationships below. Check over the temperature range of $275K \leq T \leq 375K$.

$$n_i(Si) = (9.15 \times 10^{19}) \left(\frac{T}{300} \right)^2 e^{-0.5928/kT} \quad \text{eqn. 1}$$

$$n_i(Ge) = (1.76 \times 10^{16}) (T)^{3/2} e^{-0.392/kT} \quad \text{eqn. 2}$$

2. Generate a MATLAB program to compute and plot the Fermi function, $f(E)$, and $1-f(E)$ versus $\Delta E = E-E_f$ for values of ΔE that is over the range of $-0.5eV \leq \Delta E \leq 0.5eV$ for varying temperature settings where Temperature = 150, 250, 350, 450 and 550K. Make sure that each $f(E)$ versus ΔE curve at each temperature is superimposed on the same plot. Discuss what you see in your plots as the Fermi function, $f(E)$, and $1-f(E)$ varies with temperature and energy.
3. Consider GaAs at $T = 300K$ with $N_d = 0$. (a) Plot the position of the Fermi energy level with respect to the intrinsic Fermi energy level as a function of the acceptor impurity concentration over the range of $10^{14} \leq N_a \leq 10^{17} \text{ cm}^{-3}$. (b) Plot the position of the Fermi energy level with respect to the valence-band energy over the same acceptor impurity concentration given in part (a).
4. The temperature of a sample of Ge is $T = 300K$ and the acceptor doping concentration is $N_a = 0$. Plot the minority carrier concentration (on a log-log plot) versus N_d over the range $10^{15} \leq N_d \leq 10^{18} \text{ cm}^{-3}$