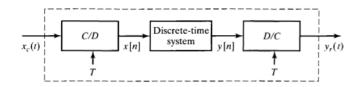
EE 351M HW #4 Due: 02/14/17

Homework Set #4

1. (24 pts) A bandlimited continuous-time signal is known to contain 60 Hz component which we want to remove by processing with the system shown below. Assume that $T = 10^{-4}$.



(a) (6 pts) What is the highest frequency that the continuous time signal can contain if aliasing is to be avoided?

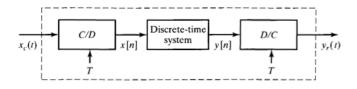
(b) (12 pts) The discrete-time system to be used has the following frequency response:

$$H(e^{j\omega}) = \frac{[1 - e^{-j(\omega - \omega_0)}][1 - e^{-j(\omega + \omega_0)}]}{[1 - 0.9e^{-j(\omega - \omega_0)}][1 - 0.9e^{-j(\omega + \omega_0)}]}$$

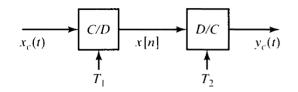
Using Matlab, plot the magnitude and phase of $H(e^{j\omega})$ for $\omega_0 = \pi/2$. Please submit your code and plots.

(c) (6 pts) Which value of ω_0 would you choose to eliminate the 60 Hz component?

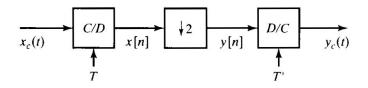
2. (16 pts) Consider the system in the figure below with $X_c(j\Omega) = 0$ for $|\Omega| \ge 2\pi(1000)$ and the discrete time system a squarer, i.e. $y[n] = x^2[n]$. What is the largest value of T such that $y_c(t) = x^2(t)$?



3. (16 pts) Assume that in figure below $X_c(j\Omega) = 0$ for $|\Omega| \ge \pi/T_1$. For the general case of $T_1 \neq T_2$, express $y_c(t)$ in terms of $x_c(t)$.



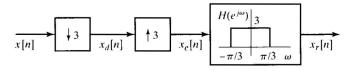
4. (20 pts) In the figure below, $x[n] = x_c(nT)$ and y[n] = x[2n].



(a) Assume that $x_c(t)$ has a Fourier transform such that $X_c(j\Omega) = 0$, $|\Omega| > 2\pi(100)$. What value of T is required so that

$$X(e^{j\omega}) = 0, \quad \frac{\pi}{2} < |\omega| \le \pi?$$

- (b) How should T' be chosen so that $y_c(t) = x_c(t)$?
- 5. (24 pts) Consider the system shown below. For each of the following input signals x[n], indicate whether the output $x_r[n] = x[n]$.



(a) (8 pts) x[n] = cos(πn/4)
(b) (8 pts) x[n] = cos(πn/2)
(c) (8 pts)

$$x[n] = \left[\frac{\sin(\pi n/8)}{\pi n}\right]^2$$

Hint: Use the modulation property of the Fourier transform to find $X(e^{j\omega})$.