ESP Example

Given:

```
Airflow = Q = 2000 m<sup>3</sup>/min

Average particle charge = q = 10 electron charges

Electric field = 50,000 V/m

Particle diameter = d_p = 1 \mum

Each plate dimension = 6m x 3m
```

Question:
How many plates are
needed to achieve a design
efficiency of 99%?

ESP Solution

1. Determine Cunningham slip factor @ d_p 1.0 μm

Table 1.	Cunningham Slip Correction Factors for Air (298°K, 1.0 atm)		
d _{pa} (μm)	C _c	d _{pa} (μm)	C _c
0.001	221.6	0.1	2.911
0.002	111.1	0.2	1.890
0.003	74.25	0.3	1.574
0.004	55.83	0.4	1.424
0.005	44.78	0.5	1.337
0.006	37.41	0.6	1.280
0.007	32.15	0.7	1.240
0.008	28.20	0.8	1.210
0.009	25.14	0.9	1.186
0.01	22.68	1.0	1.168

2. Calculate electric charge on each particle $q = 10e = 10 (1.6 \times 10^{-19} C) = 1.6 \times 10^{-18} C$

ESP Solution

3. Calculate drift speed:

$$V_e = \frac{qEC_c}{3\pi\mu d_p} = \frac{(1.6 \times 10^{-18} \,\text{C})(5 \times 10^4 \,\text{V/m})(1.166)}{(3\pi)(1.81 \times 10^{-5} \,\text{kg/m.s})(10^{-6} \,\text{m})} = 5.47 \times 10^{-4} \,\text{m/s}$$

4. For an efficiency of 99%:

$$\exp\left(-\frac{AV_e}{Q}\right) = 1 - 0.99 = 0.01 \implies \frac{AV_e}{Q} = 4.61$$

ESP Solution

5. Calculate total collecting area:

$$A = \frac{(4.61)(33.33 \,\mathrm{m}^3 \,/\,\mathrm{s})}{(5.47 \times 10^{-4} \,\mathrm{m}/\,\mathrm{s})} = 280,632 \,\mathrm{m}^2$$

Note Q of 2000 m³/min converted to m³/sec

6. Calculate number of plates:

Each plate has a collecting area of $6m \times 3m = 18 \text{ m}^2 \times 2 \text{ sides} = 36 \text{ m}^2$

n = number of plates = $280,632 \text{ m}^2 / 36 \text{ m}^2 = 7,795 \text{ plates}$